ISSN 2394-5125
 

Review Article 


MACHINE LEARNING BASED DIGITAL IMAGE WATERMARKING

K. Bramara Neelima, S. Arulselvi.

Abstract
Watermarking is the method of adding information in digital media for content protection and authentication. Digital image watermarking is one of the solutions to offer value added security on the top of authentication and data encryption for content protection in digital images. The watermarking methods can be frequential and spatial domain methods. In this work, the frequency domain based watermarking method is implemented with the use of discrete wavelet transform (DWT). Along with the frequency domain technique, here we are utilizing the combination of topical developments of the mathematical techniques and most advanced algorithms of machine learning for digital image watermarking process. The mathematical technique considered here is the principal component analysis (PCA) because of its property of dimensionality reduction which further enhances the robustness to watermarking process. The machine learning algorithm taken into account in this work is the support vector machine (SVM) algorithm to increase the accuracy of watermarking process.

Key words: Digital Image Watermarking, Principal Component Analysis, Support Vector Machine.


 
ARTICLE TOOLS
Abstract
PDF Fulltext
How to cite this articleHow to cite this article
Citation Tools
Related Records
 Articles by K. Bramara Neelima
Articles by S. Arulselvi
on Google
on Google Scholar


How to Cite this Article
Pubmed Style

K. Bramara Neelima, S. Arulselvi. MACHINE LEARNING BASED DIGITAL IMAGE WATERMARKING. JCR. 2020; 7(2): 129-133. doi:10.31838/jcr.07.02.24


Web Style

K. Bramara Neelima, S. Arulselvi. MACHINE LEARNING BASED DIGITAL IMAGE WATERMARKING. http://www.jcreview.com/?mno=86283 [Access: September 14, 2020]. doi:10.31838/jcr.07.02.24


AMA (American Medical Association) Style

K. Bramara Neelima, S. Arulselvi. MACHINE LEARNING BASED DIGITAL IMAGE WATERMARKING. JCR. 2020; 7(2): 129-133. doi:10.31838/jcr.07.02.24



Vancouver/ICMJE Style

K. Bramara Neelima, S. Arulselvi. MACHINE LEARNING BASED DIGITAL IMAGE WATERMARKING. JCR. (2020), [cited September 14, 2020]; 7(2): 129-133. doi:10.31838/jcr.07.02.24



Harvard Style

K. Bramara Neelima, S. Arulselvi (2020) MACHINE LEARNING BASED DIGITAL IMAGE WATERMARKING. JCR, 7 (2), 129-133. doi:10.31838/jcr.07.02.24



Turabian Style

K. Bramara Neelima, S. Arulselvi. 2020. MACHINE LEARNING BASED DIGITAL IMAGE WATERMARKING. Journal of Critical Reviews, 7 (2), 129-133. doi:10.31838/jcr.07.02.24



Chicago Style

K. Bramara Neelima, S. Arulselvi. "MACHINE LEARNING BASED DIGITAL IMAGE WATERMARKING." Journal of Critical Reviews 7 (2020), 129-133. doi:10.31838/jcr.07.02.24



MLA (The Modern Language Association) Style

K. Bramara Neelima, S. Arulselvi. "MACHINE LEARNING BASED DIGITAL IMAGE WATERMARKING." Journal of Critical Reviews 7.2 (2020), 129-133. Print. doi:10.31838/jcr.07.02.24



APA (American Psychological Association) Style

K. Bramara Neelima, S. Arulselvi (2020) MACHINE LEARNING BASED DIGITAL IMAGE WATERMARKING. Journal of Critical Reviews, 7 (2), 129-133. doi:10.31838/jcr.07.02.24