
JOURNAL OF CRITICAL REVIEWS  
                                                                                    
                                                                           ISSN- 2394-5125             VOL 7, ISSUE 19, 2020 
 

10501 
 

Microbial Siderophores and their potential 

applications 

Nikitasinh Gohil* and Dr. Sakshi Yadav 

Department of Microbiology, Dr. A. P. J. Abdul Kalam University, Indore 

*Corresponding author: nikitasinhgohil@yahoo.com 

Received : 07.10.2020    Revised : 06.11.2020   Accepted :07.12.2020 

Abstract 

Siderophores are naturally occurring iron chelating agent secreted by bacteria, fungi, 

and plants. Iron is considered to be the fourth most abundant element in the earth's crust 

from soil, however, many plants struggle to absorb iron due to its insoluble form, which 

severely limits the bioavailability of this metal. Therefore, there is a problem with the 

absorption of iron. Siderophores are responsible for enhancing the absorption of iron 

from the surrounding environment to carry out vital metabolic processes. This paper is 

an attempt to review the importance of siderophore in increasing the iron utilization 

strategy of plants, the mode of transport of accessory cells with iron across membranes, 

and depending on differences in chemical structure, functional form, and source of 

isolation, four different groups of siderophores (hydroxamates, catecholates, 

carboxylates, and mixed ligand siderophores) identified. Siderophores function as bio-

controllers, biosensors, and bioremediation and chelating agents, in addition to their 

important roles in altering soil minerals and improving soil and plant growth.  

Keywords: Siderophores, microorganisms, iron transport, bioremediation.  

1. INTRODUCTION 

Iron (Fe) a catalyst for all enzymatic processes plays a vital role in the formation of 

oxygen metabolism, and electron transfer, also for the biofilm formation to regulate the 

stability of polysaccharide matrix (Weinberg, 2004; Chhibber et al., 2013) and for the 

synthesis of DNA and RNA (Aguado- Santacruz et al., 2012) in all the living organism 

for its various cellular activities (Litwin and Calderwood, 1993). Iron is an important 

micronutrient present in nature, but it is not acquired by microorganisms (Saha et al., 

2013) when it undergoes oxidation from Fe
2+

 to Fe
3+

 which is an insoluble form. 

Therefore, microorganisms such as Pseudomonas, Azotobacter, Bacillus, Rhizobium, 

and Serratia (Glick et al., 1999; Looper et al., 1999) secretes to overcome the iron-

deficient conditions (Neilands, 1981), fungi such as Aspergillus, Penicillium, 

Trichoderma, Rhizopus, Fusarium. Phytoplanktons and cyanobacteria are also known to 

produce these chelating compounds (Trick et al., 1983; Armstrong and Van Baalen, 

1979) which are low molecular weight having a high affinity towards iron, known as 

‘scavengers’(Jenifeer and Sharmili, 2015; Krewulak and Vogel, 2008). 
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Siderophores not only scavenge Fe but also form complexes with other essential 

elements in the environment such as Mo, Mn, Co, and Ni and provide to the microbial 

cells (Bellenger et al., 2008; Braud et al., 2009). 

In Gram-negative and Gram-positive bacteria, uptake of iron is regulated by several 

repressor proteins (Visca and Imperi, 2018), Siderophore binding proteins (SBPs) or 

outer membrane proteins (OMPs), on the bacterial cell membrane (Schalk et al., 2009 

and Fukushima et al., 2014). Siderophore forms complex with the molecules and are 

transported inside the cells by membrane receptors by an operon, regulated by five 

genes (Lewin, 1984) transported in the intracellular periplasmic space. 

Metal acquisition using siderophores by other microorganisms increased their 

applications in a wide range of fields such as bioremediation, agriculture, medicine, cell 

communication, virulence, and oxidative stress (Johnstone et al., 2015). In this review, 

microbial siderophores will be discussed with their role and potential applications in 

different fields. 

2. MICROBIAL SIDEROPHORES 

There are wide ranges of siderophores produced by microorganisms (Fig.1). Most 

common siderophores produced by bacteria are hydroxamate (i.e. ferrioxamine B), 

catecholates (i.e. Enterobactin), and few are carboxylates (i.e.rhizobactin), another is 

nixed types (i.e. pyoverdine) (Cornelis, 2010). Hydroxamates are most commonly 

produced by fungi belonging to the ferrichrome family. (Renshaw et al., 2002; 

Winkelmann, 2007) produced by Aspergillus ochraceous, Ustilago sphaerogena (Jalal 

and Vander Helm, 1991; Ali et al., 2011; Neilands, 1981).  

Gram-positive and Gram-negative bacteria possess different transport mechanisms for 

iron acquisition. It is a multi-component system both receptors and an energy-dependent 

process (Sigel and Sigel, 1998).  

These systems include Ton B- dependent outer membrane protein complex in Gram-

negative bacteria e.g. Escherichia coli which identifies the complexes (Krewulak and 

Vogel, 2008; Wandersman and Delepelaire, 2004) and binds to the outer membrane 

receptor, it crosses the membrane through the energy-dependent system consisting of 

outer membrane proteins bound with periplasmic binding proteins and inner membrane 

proteins (Fec CDE-Fep CDE proteins) (Matzanke, 1991) and accompanied towards the 

cytoplasmic membrane via ATP- binding cassette (ABC) transport system, reaches the 

cytoplasm and releases in form of Fe(II)(Fig. 1). 
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Fig.1: Iron transport system. 

 

In contrast, Gram positive bacteria e.g. Bacillus sp. Lacks Outer membrane therefore 

Fe(III)- siderophore complexes bound by the periplasmic binding proteins that are 

attached to the cell membrane due to the absence of the periplasmic space (Fukushima 

et al., 2013) are then transported to cytoplasm via ATP-dependent (ABC) transporters 

(Braun and Hantke, 2011). 
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Fig.2: Molecular structures of Siderophores 
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There are four different Fe transport systems in fungi (Vander Helm and Winkelmann, 

1994):  

(i) In Shuttle mechanisms, reductive enzymes breakdown the ligand between the Fe 

(III) - siderophore complex when it is transported across the cell membrane and 

free siderophore is released and recycled (Ardon et al., 1998).  

(ii) In the taxicab mechanisms, is used by Rhodotorula sp. Where the Fe (III) complex 

is transferred to intracellular ligands (Winkelman and Huschka, 1987).  

(iii) In the Hydrolytic mechanism, the whole Fe (III)-siderophore complex undergoes 

several degradative and reductive processes to release and reduce Fe (III) →Fe (II) 

inside the cell (Adjimani and Emery, 1988).  

(iv) In the reductive mechanism, Fe (III) - siderophore complexes are not transported, 

reduction of Fe (III) → Fe (II), and Fe is taken up by the cell (Eckery and Emery, 

1983). 

3. APPLICATIONS OF SIDEROPHORE 

Agricultural application 

Production of siderophores by soil microorganisms can help promote mineral 

weathering, as it plays a significant role in the iron dissolution. The introduction of 

Pseudomonas putida in soil produces pseudobactin which increases the yield and 

growth of plants (Kloepper et al., 1980). Hydroxamate type siderophore plays a vital 

role in the immobilization of metals in soil (Barton et al., 1954), they are known to 

reduce the heavy metals deposition as it reduces the soil fertility. They are known to 

provide Fe as a micronutrient to enhance growth. Siderophores are also known as an 

eco-friendly alternative to pesticides (Schenk et al., 2012) for protecting them from 

phytopathogens e.g. production of Pyoverdine by Pseudomonas species. Recent 

investigation on plant growth activities and siderophores produced by Aspergillus niger, 

Penicillium citrinum and Trichoderma harzinum were found to increase the length and 

are also responsible for growth in the shoot and root of chickpeas (Yadav et al., 2011). 

Siderophores produced by bacterial species are also known to inhibit the growth of 

phytopathogens such as Pyoverdine in peanuts and maize (Pal et al., 2001) and 

siderophores secreted by Bacillus subtilis showed an important role in the biocontrol of 

Fusarium oxysporum causing wilting of the pepper plant (Yu et al., 2011). 

Optical biosensor 

A biosensor is a biomolecule bound to an electrical device. Devices such as converters, 

amplifiers, and noise filters. To increase the signal-to-noise ratio that allows different 

types of responses to be recognized by the engineered system (Gupta et al., 2008). 

Pyoverdine is a yellow-green water-soluble fluorescent dye. Siderophores are 

characterized by the following characteristics (Barrero et al., 1993): (a) They form 
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strong Fe(III) complexes with weak or negligible affinity for Fe (II), (b) Fe (III) 

complex has very high stability constant (Approximately K = 1032) (Kurtz and Crouch, 

1991). This Property makes pyoverdine a promising remedy for the construction of 

optical biosensors (Pesce and Kaplan, 1990). Uses of siderophore with anomalous Fe 

(III) coupling constants are an ideal choice for applicable sensor molecular recognition 

elements. In determining the bioavailability of Fe in seawater or soil (Chung Chun Lam 

et al., 2006) concentration. The amount of Fe present in the ocean was determined by 

using Siderophore as a biosensor (Chung Chun Lam et al., 2006). In this study, they 

used parabactin produced by Paracoccus denitrificans as a biosensor, encapsulation into 

a sol-gel thin film on a quartz substrate. Seawater samples were analyzed by a Flow cell 

that was placed in a fluorescent sample split spectrometer. Siderophore also provides an 

excellent sensitive and selective detection system that mimics the biological uptake 

process (Ellerby et al., 1992). For example, azotobactin was produced by A. vinelandii 

.Fe (III) (Sharma and Gohil,) redesigned based on encapsulating azotobactin in a sol-gel 

matrix without significant loss of fluorescent signal.  

Bioremediation of Persistent pollutants in the environment 

Siderophores have a strong binding affinity towards Fe but are also effective in 

solubilizing other wide range of metals such as Co, Cd, Ni, Cu, Pb, Zn, Th(IV), U(IV), 

and Pu (IV) (Schalk et al., 2011). Therefore, it becomes a vital tool in bioremediation 

which increases due to the manufacturing industries, sludge applications, mining, and 

nuclear power stations, which led to metal deposition and cause pollution (Wasi et al., 

2013). It is an economic and eco-friendly method (Rajkumar et al., 2010). 

Hong and colleagues (2010) recorded in vitro solubilizing of Cu and Zn by siderophores 

produced by Fusarium solani. Wang et al., (2011) reported the removal of As from 

metal-contaminated soil by siderophores produced by Agrobacterium radiobacter. 

Phytosiderophores are also reported for the efficient metal mobilization in soil 

(Rajkumar et al., 2009) compared to that synthetic chelators and microbial siderophores 

(Awad and Romheld, 2000; Singh et al., 2008). 

Petroleum hydrocarbons 

Petroleum hydrocarbons in marine ecosystems are one of the major environmental 

threats which can be overcome by using microorganisms, in their remediation activity 

from the marine environment. Under Fe- limiting conditions, microbial and through 

indirect method siderophores participate in the biodegradation activity of petroleum 

hydrocarbons. Marinobacter hydrocarbonoclasticus was the first reported marine 

bacterium responsible for oil-degrading and its siderophore was structurally 

characterized (Barbeau et al., 2002). 
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Reprocessing of Nuclear fuel  

The Purex technique has been used commercially to reprocess irradiated nuclear gas 

with the aid of using solvent extraction and U and Pu separation strategies for reuse 

from fission merchandise, including Ti and Np (Taylor and May 1999). During this 

technique, U and Pu circulate the solvent and turn out to be infected with Np. 

Siderophores had been proven to permit the selective elimination of Np from the solvent 

phase (Taylor et al., 1998), and thus siderophores might be used inside the Purex 

technique to simplify the doing away with the actinides (Renshaw et al., 2002). 

Desferrioxamine B bureaucracy is a strong complex with U (VI), in which its 

hydroxamate purposeful institution is comparable to acetohydroxamic acid, a ligand that 

has been proposed for actinide complexion (Mullen et al., 2007). Marshall et al. (2010) 

found that low siderophore levels were high enough to affect the dissolution of usage of 

natural gas and good for the use of artificial desferrioxamine B and pyoverdine 

produced with the help of P.fluorescens.Based on research, siderophores have been 

proposed for the restoration of radioactive waste and the reprocessing of nuclear gas. 

Siderophore and MRI  

To improve contrast enhancement, for example, in Magnetic resonance imaging, 

different paramagnetic ions such as Mn
2+

, Fe
3+,

 and Gd
3+

 was used. Gd
3+

 is especially 

suitable as a contrast agent in diagnostic medical MRI because of its high magnetic 

moment and cheap electronics. The mitigation rate, Gd
3+

 is high, toxic at the 

concentration required for MRI. Therefore, this requires a chelating agent Prevents 

release of free cations in vivo. Again, siderophore and synthetic analogs Serves as the 

main model for such things Chelating agent. 

Iron chelators in cancer therapy 

Siderophores are potentially used as chelating agents in the treatment of cancer, such as 

Dexrazoxane, O-trensox, Desferriexochelin, Desferrithiocin, Tachpyridine has been 

found in cancer therapy (Miethke and Marahiel, 2007). Also used for siderophore 

clearance non-transferrin-bound serum iron occurs as a result of cancer treatment 

Several Chemotherapy (Chua et al., 2003). 

Antimalarial activity of iron chelators 

Some siderophores had been determined to be beneficial withinside the remedy of 

malaria caused via way of means of Plasmodium falciparum. Siderophore produced via 

way of means of Klebsiella pneumoniae act as an antimalarial agent (Gysin et al., 

1991). Desferrioxamine B produced via way of means of Streptomyces pilosus (Now 

produced via way of means of chemical synthesis also) is lively against P. falciparum in 

vitro in addition to in vivo. Siderophore enters internal P. falciparum molecular and 

reasons intracellular iron depletion. The identical siderophore changed into proven to 
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inhibit boom of Trypanosoma brucei, some other protozoic parasite inflicting 

Trypanosomiasis in human bloodstream (Breidbach et al., 2002). 

Trojan horse antibiotics (Siderophore- antibiotics conjugates) 

Siderophore can be used for selective use Delivery of antibiotics in antibiotics resistant 

bacteria. It’s possible powerful application using iron carry siderophore transport 

capacity to carry intracellular drug by conjugating siderophore with an antibacterial 

agent (Trojan horse strategy). Nature provided an example for siderophore-antibiotics 

such as Albomycin (Benz et al., 1982). Ferrimycin (Bickel et al., 1966) or Salimycin 

(Vertesy et al., 1995). Albomycin uses part of the ferrichrome Structure of Fe3 + 

chelation connected via a Serine spacer to toxic molecules. Several Microorganisms 

introduce albomycin via the Ferrichrome system for cells with toxic parts which showed 

harmful effects on cells are enzymatically released. Similarly, ferrimycin has attached 

with a unit containing antibiotics activity of amides to ferrioxamine B. Salimycins is a 

dicarboxylic acid Spacer between trihydroxamate siderophore and aminoglycosides 

antibiotics. Nature outbreak Siderophore-antibiotics paved the way create a synthetic 

Trojan. 

4. CONCLUSION 

Currently, there are some references to the microbial siderophore and its agricultural, 

health and environmental benefits. Therefore, it is necessary to investigate and study the 

details of siderophore ecosystems, from mesophilic to extremophiles, and to harness 

those advances for life and environmental well-being. 
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