
JOURNAL OF CRITICAL REVIEWS
 ISSN- 2394-5125 VOL 7, ISSUE 19, 2020

11095

AUTO SCALING TECHNIQUES IN CLOUD COMPUTING

Research Scholar - Pooja Kumari Jha
1

Department of Computer Science, University Teaching Department, Dr. A. P. J. Abdul Kalam

University, Indore, MP, India

Research Guide – Dr Deepika Pathak
2

Department of of Computer Science, University Teaching Department, Dr. A. P. J. Abdul Kalam

University, Indore, MP, India

1 scr.pooja@gmail.com,2 deepikapathak23@gmail.com

ABSTRACT

Serverless computing offers powerful, event-driven integrations with numerous cloud

services, simple programming, and deployment models, and fine-grained scaling, and

cost management. The classification of auto-scaling methods is: “Application Profiling

(AP), Threshold-based Rules (TR), Fuzzy Rules (FR), Control Theory (CTH), Queuing

Theory (QTH), Machine Learning (ML), and Time Series Analysis (TSA). An

extensively researched topic in cloud environments is resource auto-scaling for the

purpose of preventing resource over-provisioning or under-provisioning. Many

organisations implement the autoscaling process based on the Autonomic Prediction

Suite (APS) method proposed by them. To improve this mechanism, researchers

investigate a number of solutions for each phase. This paper shows that this phase of the

controlling cycle is both essential and effective in terms of cost reduction.

Keywords: auto-scaling, cloud computing, Autonomic Prediction Suite (APS)

INTRODUCTION

An inexact characterization of auto-scaling has been offered by various scholars and

cloud innovators in distinct environments. According to Gartner, auto-scaling is

characterised as follows: A highly automated form of scaling can remove and add limits

JOURNAL OF CRITICAL REVIEWS
 ISSN- 2394-5125 VOL 7, ISSUE 19, 2020

11096

for frameworks and services that applications utilise. When innovation buyers have

reasonable trust in the solution, they should use it to plan for provisioned ability to

application demand, which reduces costs. A phrase which describes how Amazon Web

Service (AWS) auto-scaling works is distributed computing service in which clients are

able to dispatch or end virtual cases depending on what is designated, what the situation

is, and when they are all listed on the calendar. Similarly, with auto-scaling, scaling up or

down according to the application's needs can be referred to as scaling up or down at

random times. In academic terms, auto-scaling allows dynamic provisioning of

virtualized assets across distributed computing foundations. A cloud-based application

has the capability to increase or decrease the amount of assets used to fulfil its

prerequisite requirements.

Figure 1: Auto scaling

The primary characteristics of auto-scaling are derived from these definitions:

 automatically adding additional resources during increased demand (i.e., scaling

out) (i.e., the automatic termination of extra unused resources when demand

decreases, in order to minimise cost).

JOURNAL OF CRITICAL REVIEWS
 ISSN- 2394-5125 VOL 7, ISSUE 19, 2020

11097

 The capability of establishing scaling rules for outbound and inbound scaling.

 It offers the facility to automatically identify and replace instances that are

unhealthy or unreachable.

Auto-scaling is the mention of these topics is quite common in regards to provisioning of

resources, scalability, and elasticity. Many of these terms are used in an opposite manner,

but they have very different meanings. comprehending the differences between these

ideas aids us in discovering the novel issues pertaining to auto-scaling and directs

attention to the intricate networking schemes.

Resource provisioning: Flexible resource provision empowers frameworks to scale out

and in resources as workload fluctuates. Incorporating cost-effective resource

provisioning induces scalability improvements. The scalability of a framework empowers

it to keep up with execution when resources like equipment are being expanded.

Horizontal scaling, otherwise known as scaling out, uses expansion hubs or machines to

add more resources to the framework. The expansion of resources, such as CPU and

handling power, occurs during the interim period when the system scales vertically.

A framework's elasticity is defined as how much it can adjust to workload changes by

provisioning and de-provisioning resources, without which the system cannot function in

an efficient manner. The auto-scaling issue for web applications can be defined as how to

autonomously and dynamically provision and de-provision a lot of resources to take into

account fluctuant application workloads with the goal that resource cost is limited and

application service level agreements (SLAs) or service level objectives (SLOs) are

fulfilled.

JOURNAL OF CRITICAL REVIEWS
 ISSN- 2394-5125 VOL 7, ISSUE 19, 2020

11098

Figure 2: Scaling up and Scaling down

Unfavorably, the auto-scaler deprovisions a few resources from every part when the

measure of solicitations has decreased. This is a great automatic control issue, which

demands a framework that dynamically tunes the sort of resources and the measure of

resources allotted to arrive at certain exhibition objectives, reflected as the SLA. In

particular, it is regularly disconnected as a MAPE (Monitoring, Analysis, Planning, and

Execution) control circle. The control cycle ceaselessly rehashes itself as the time

streams.

Monitoring: When it comes to scaling activities, it is critical to determine which pointers

need to be screened and how they should be done. Effective presentation markers are

imperative for ensuring an auto-scaler is successful. Decisions are frequently affected by

numerous variables, including the capabilities and cost of application monitoring, the

availability of service-level agreements (SLAs), and even the calculations themselves.

Keep an eye on the span: keeping an eye on the stretchiness of an autoscaler measures its

viability. Regardless, exceptionally short monitoring spans lead to high monitoring costs,

which prompts the auto-scaler to kick in. It is imperative to regulate this boundary in

order to meet adjusted performance goals.

JOURNAL OF CRITICAL REVIEWS
 ISSN- 2394-5125 VOL 7, ISSUE 19, 2020

11099

Analysis: During the analysis stage, the framework determines whether it is important to

perform scaling activities dependent on the checked data. Scaling timing: the framework

initially needs to decide when to play out the scaling activities. It can either proactively

provision/deprovision resources in front of the workload changes in the event that they

are unsurprising since the provision/deprovision process takes considerable time or it can

perform activities responsively when workload change has occurred. Workload forecast:

if the framework decides to scale the application proactively, how to precisely foresee the

future workload is a difficult assignment. Adaptively to changes: once in a while the

workload and the application may undergo significant changes. The auto-scaler ought to

know about the progressions and ideal adjust its model and settings to the new

circumstance. Swaying alleviation: scaling wavering methods the framework as often as

possible performs conflicting activities inside a brief period (i.e., gaining resources and

then discharging resources or the other way around). It ought to be forestalled as it brings

about resource wastage and more SLA infringement.

Planning: The planning stage assesses what number of resources altogether ought to be

provisioned/deprovisioned in the following scaling activity. It ought to likewise improve

the creation of resources to limit budgetary expense. Resource estimation: “the planning

stage ought to have the option to assess what number of resources are sufficiently only to

handle the current or approaching workload. This is a troublesome assignment as auto-

scaler needs to make sense of this data rapidly without having the option to execute the

scaling intend to watch the genuine application execution, and it needs to consider the

particular application deployment model in this procedure. Resource mix: to provision

resources, auto-scaler can depend on both vertical scaling and horizontal scaling. In the

event that horizontal scaling is utilized, as the Cloud providers offer different sorts of

VMs, the framework ought to determine to pick which of them for facilitating the

application. Another significant factor is the valuing model of Cloud resources.

Regardless of whether to use on-demand resources, held resources or refunded resources

enormously influences the all-out resource cost. Every one of these components structure

an immense streamlining space, which is trying to tackle efficiently in brief timeframe.

JOURNAL OF CRITICAL REVIEWS
 ISSN- 2394-5125 VOL 7, ISSUE 19, 2020

11100

Execution: The execution stage is answerable for really executing the scaling intends to

provision/deprovision the resources. It is direct and can be executed by considering

Cloud providers’ APIs. Be that as it may, from a designing perspective, having the option

to help APIs of various providers is a difficult assignment.

RESEARCH OBJECTIVES

An extensively researched topic in cloud environments is resource auto-scaling for the

purpose of preventing resource over-provisioning or under-provisioning. Many

organisations implement the autoscaling process based on the Autonomic Prediction

Suite (APS) method proposed by them. To improve this mechanism, researchers

investigate a number of solutions for each phase. While solving these issues, approaches

in this space are focused on better performance in the three monitoring, analysis, and

planning phases, while execution is rarely addressed. This paper shows that this phase of

the controlling cycle is both essential and effective in terms of cost reduction.

LITERATURE REVIEW

Maryam Amiri et al (2017), According to the dynamic nature of cloud and the rapid

growth of the resources demand in it, the resource provisioning is one of the challenging

problems in the cloud environment. The resources should be allocated dynamically

according to the demand changes of the application. Over-provisioning increases energy

wasting and costs. On the other hand, under-provisioning causes Service Level

Agreements (SLA) violation and Quality of Service (QoS) dropping. Therefore the

allocated resources should be close to the current demand of applications as much as

possible. Furthermore, the speed of response to the workload changes to achieve the

desired performance level is a critical issue for cloud elasticity.

Daniel Moldovan et al (2016), Scalable applications deployed in public clouds can be

built from a combination of custom software components and public cloud services. To

meet performance and/or cost requirements, such applications can scale-out/in their

components during run-time. When higher performance is required, new component

instances can be deployed on newly allocated cloud services (e.g., virtual machines).

https://www.researchgate.net/profile/Maryam_Amiri15
https://ieeexplore.ieee.org/author/37543705500

JOURNAL OF CRITICAL REVIEWS
 ISSN- 2394-5125 VOL 7, ISSUE 19, 2020

11101

When the instances are no longer needed, their services can be deallocated to decrease

cost. However, public cloud services are usually billed over predefined time and/or usage

intervals, “e.g., per hour, per GB of I/O. Thus, it might not be cost efficient to scale-in

public cloud applications at any moment in time, without considering their billing cycles.

Rajkumar Buyya et al (2018), Due to the emergence of cloud computing, web

application providers have been migrating their applications to cloud data centres.

Elasticity is one of the features that attracts customers to the cloud. This type of

architecture is geared toward cloud users, who can get and release computing resources

whenever they need to, which allows web application providers to automate resource

provisioning while reducing resource costs while maintaining service levels. We analyse

the issues that remain with auto-scaling web applications in the cloud, as well as the

improvements that have been made in this area. To overcome the identified problems and

identify the key properties, we present taxonomy of auto-scalers. After we study all of the

works that were surveyed, we identify weaknesses in this field by using taxonomy to map

them to the taxonomy. Also, according to the paper, we develop and suggest future

directions that we believe can be exploited in this field.

The study shows that serverless computing is a solution that allows users to create

functions that intercept and operate on data flows in a scalable manner without the need

to manage a server, although presents several challenges.

METHODOLOGY

Predictive auto-scaling systems determine how much the performance indicator will

increase in the future and then generates a scaling choice based on that prediction. To

help the predictive auto-scaling systems perform better, researchers have focused on

improving the prediction methodologies in use. Cloud auto-dominating scaling's

prediction technique is time-series prediction. Using historical values of a performance

indicator to forecast its future value is a common use of time-series prediction algorithms.

The important concept is the performance indicator pattern (how the performance

indicator values change over time), which is currently ignored by many of the existing

methodologies. The IaaS layer is to be provisioned using an autonomic prediction suite

JOURNAL OF CRITICAL REVIEWS
 ISSN- 2394-5125 VOL 7, ISSUE 19, 2020

11102

that utilises the decision fusion methodology”. A proposed suite predicts the near future

value of the performance indicator based on the performance indicator's pattern and so

finds the most accurate strategy to better manage resources. The fusion rule of the

prediction suite in this paper is the favourable influence of diverse prediction algorithms

on the prediction accuracy of the predictive auto-scaling systems.

Figure 3: Cloud auto-scaling autonomic systems

This paper explores the effects of the cloud service's incoming workload patterns on the

mathematical core of the learning process in order to lay out the theoretical basis of the

prediction suite. To date, experimental evaluations of predictive auto-scaling strategies

for IaaS layer cloud computing have only been performed. It appears as though the

theoretical principles of predictive auto-scaling haven't been researched in any depth in

the field of predictive auto-scaling. Establishing a robust and more generic basis is

absolutely required to make certain that different auto-scaling prediction algorithms have

a solid and more comprehensive understanding. Because of this, this research does a

thorough investigation of the theories that have been employed in predictive auto-scaling

systems to support the suggested prediction suite. Additionally, this research seeks to

discover the component parts that have a theoretical impact on model correctness. Theory

gives a rigorous analysis and explanation for cloud algorithm behaviour, depending on

workloads.

Algorithm 1 shows an overview of the algorithm’s operations in a way that it carries out

monitoring (line 2) continuously (every minute) while performs analysis, g, and

JOURNAL OF CRITICAL REVIEWS
 ISSN- 2394-5125 VOL 7, ISSUE 19, 2020

11103

execution (lines 4 to 6) at specified intervals (∆t). Therefore, every time “Clock % ∆t = 0,

it is the turn to perform analysis, planning, and execution. Similar to monitoring, the

updating component of quarantined VMs is recalled every minute. This section provides

a detailed explanation of the algorithm for every MAPE phase.

Algorithm 1: Auto-scaling mechanism

Repeat every 1 minute (while there is an end user request)

Monitoring ();

If Clock % ∆t = 0 then

Analysis (history of 𝑀𝑢, history of 𝑀𝑟𝑡);

Planning (𝐴𝑢, 𝐴𝑟𝑡);

Execution (D);

end if

Update Quarantined VMs

end repeat

RESULT

This area presents tests which found that APS (Application Platform Service)

presentation in the CloudSim Simulator is tested. According to this, the investigation is to

begin by using an approximate number of VMs provided by the CP for the purpose of

facilitating a Web application. The users begin sending their requests to the application a

short time later. To overcome the issue of unplanned VM under-provisioning and over-

provisioning, the system makes use of on-demand VMs.

JOURNAL OF CRITICAL REVIEWS
 ISSN- 2394-5125 VOL 7, ISSUE 19, 2020

11104

Figure 4: Serverless architecture markets

Cost-sharing and maintaining end-user satisfaction are what drive the inspiration behind

the mechanism. Every investigation uses a predefined executor: The default, as well as a

professional and an APS one (proposed). It also means that unique parameters associated

with the monitoring, assessment, and organizing stages are immobile, allowing for their

introduction to be assessed sensibly. NASA workload was used as the model for user

Web requests to the AP. Regular NASA workload includes applying web application

auto-scaling presentation assessment. A more complex workload, which speaks to a

variety of application end results after some time that results in the outcomes and

conclusions being increasingly reasonable and concrete to be applied in real-world

scenarios. During the day, NASA Web servers receive 100,960 user demands. Extreme

fluctuations in workload may necessitate a practical scale test. The results of the study

show that the examples from the example of user demand and the example of this

workload agree. Early in the morning hours, there is an increased amount of traffic to

website compared to the evening hours. Later in the day, there is much less traffic, with

the start of the workday. Also, early in the morning hours, there is increased traffic

compared to the late evening hours. Later in the day, traffic is significantly reduced,

beginning with the start of the workday.

JOURNAL OF CRITICAL REVIEWS
 ISSN- 2394-5125 VOL 7, ISSUE 19, 2020

11105

Figure 5: Comparison between the oscillation mitigation of the mechanism (or

overload control) after using each of the executors in the mechanism

In overall, the Professional executor is only efficient in cost saving but APS in addition to

cost shows more efficiency in meeting SLA. The reason behind this performance

improvement by autonomic prediction suite is its aware selection techniques and

quarantining surplus VMs.

CONCLUSION

In this paper, we examined the issue of optimizing the price and execution time for

serverless computing. Serverless functions empower the execution of arbitrary functions,

paying for use as opposed to for saved computing assets. To give complex functionality,

these serverless functions are frequently collected into work processes. Be that as it may,

estimating the expenses of this serverless work process is trying as the response time and

along these lines the expenses of a serverless capacity rely upon its info boundaries,

which are engendered from earlier functions inside the work process. Existing approaches

for the cost estimation of serverless functions and work processes don’t consider the

JOURNAL OF CRITICAL REVIEWS
 ISSN- 2394-5125 VOL 7, ISSUE 19, 2020

11106

impact of information boundaries on the response time. In this paper, we propose system

to foresee the expenses of serverless work processes.

REFERENCES

[1] Shuai Zhang, Xuebin Chen, Shufen Zhang, Xiuzhen Huo, “Cloud Computing

Research and Development Trend,” IEEE, 2010.

[2] Joseph M. Hellerstein, Jose Faleiro, Joseph E. Gonzalez, and Johann Schleier-

Smith, “Serverless Computing: One Step Forward, Two Steps Back” (2019).

[3] Mubashra Sadaqat, Ricardo Colomo-Palacios,”Serverless computing: a

multivocal literature review” (2018).

[4] Tarek Elgamal, Atul Sandur , Klara Nahrsted, “Costless: Optimizing Cost of

Serverless Computing through Function Fusion and Placement” (2019)

[5] Cosmina Ivan, Radu Vasile and Vasile Dadarlat, “Serverless Computing: An

Investigation of Deployment Environments for Web APIs” (2019).

[6] H. Shafiei, A. Khonsari, and P. Mousavi, “Serverless Computing: A Survey of

Opportunities, Challenges and Applications” (2019)

[7] Hanieh Alipour, Yan Liu, Abdul wahab Hamou-Lhadj, “Analyzing Auto-scaling

Issues in Cloud Environments”, (2014)

[8] Brian Dougherty, Jules White and Douglas C. Schmidt, “Model driven auto-

scaling of green cloud computing infrastructure”, International Journal of Future

Generation Computer Systems, Volume 28 Issue 2, February, 2012, pp 371-378.

[9] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, "A review of auto-scaling

techniques for elastic applications in cloud environments," Journal of Grid

Computing, vol. 12, pp. 559-592, 2014.

[10] E. F. Coutinho, F. R. de Carvalho Sousa, P. A. L. Rego, D. G. Gomes, and

J. N. de Souza, "Elasticity in cloud computing: a survey," annals of

telecommunications-annales des telecommunications, vol. 70, pp. 289-309, 2015.

[11] C. Qu, R. N. Calheiros, and R. Buyya, "Auto-scaling Web Applications in

Clouds: A Taxonomy and Survey," 2016.

JOURNAL OF CRITICAL REVIEWS
 ISSN- 2394-5125 VOL 7, ISSUE 19, 2020

11107

[12] D. Moldovan, H. L. Truong, and S. Dustdar, "Cost-Aware Scalability of

Applications in Public Clouds," in 2016 IEEE International Conference on Cloud

Engineering (IC2E), 2016, pp. 79-88.

[13] M. Amiri and L. Mohammad-Khanli, "Survey on Prediction Models of

Applications for Resources Provisioning in Cloud," Journal of Network and

Computer Applications, 2017.

[14] N. Bila, P. Dettori, A. Kanso, Y. Watanabe, and A. Youssef, “Lever-

aging the serverless architecture for securing linux containers,” in 2017 IEEE 37th

International Conference on Distributed Computing Systems Workshops

(ICDCSW). IEEE, 2017, pp. 401–404.

[15] E. C. Zambrano, “Smart its sensor for the transportation planning based on

iot approaches using serverless and microservices archi- tecture,” IEEE Intelligent

Transportation Systems Magazine, vol. 10, no. 2, pp. 17–27, 2018.

