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Abstract:  

Ecological Niche Modeling (ENM) serves as an alternative and effective tool for predicting 

suitable habitats for species with encouraging conservation implications. They are extremely 

useful in modelling species richness patterns, predicting future distributions, predicting the 

extent of species invasions and addressing ecological and evolutionary questions. Recently 

numerous modeling approaches have been successfully applied to predict species distributions 

especially for species having scarce presence. Here we focus on the conceptual and theoretical 

foundations on which ENM approach is based. We evaluated various approaches and methods 

that are being used to model species distributions. We present an overview of two important 

parameters viz. spatial scale of environmental data and choice of environmental variables both of 

which have a significant influence on model quality and prediction of suitable habitats. A brief 

review of the significance of ecological niche modeling is also presented.   
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Overview 

Ecological Niche Modeling (ENM), also popularly known as species distribution modeling, is a 

recent tool which uses algorithms to relate known occurrences of a species across landscapes to 

digital raster GIS coverages summarizing environmental variation across landscapes to develop a 

quantitative picture of the ecological distribution of the species. They help in gaining ecological 

and evolutionary insights into species geographic distributions. Presently there are a wide range 

of environmental niche models for studying species distributions such as Bioclim (Busby, 1991), 

Domain (Carpenter et al., 1993), linear, multivariate and logistic regressions (Mladenoff et al., 

1995; Felicisimo et al., 2002; Fonseca et al., 2002), generalized linear modelling and generalized 

additive modelling (Frescino et al., 2001; Guisan et al., 2002), discriminant analysis (Manel et 

al., 1999), classification and regression tree analysis (Death and Fabricius, 2000; Kelly, 2002), 
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genetic algorithms (Stockwell and Peters, 1999), artificial neural networks (Manel et al., 1999; 

Moisen and Frescino, 2002), and support vector machines (Guo et al., 2005). Ecological niche 

models find immense applications in conservation, modelling species richness patterns, 

predicting future distributions, predicting the extent of species invasions, addressing ecological 

and evolutionary questions. However ENMs have faced a good amount of criticism recently. 

ENMs are seriously flawed as these approaches do not consider biotic interactions and species 

dispersal patterns. None the less ENMs serve as an important tool in conservation and planning 

management strategies. However, these models need to be used carefully when dealing with 

conservation issues. The present review of literature provides an overview of distribution 

modelling and various modelling techniques used and their applications in ecology and 

biogeography.  
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Fig. 1: Outline of Ecological Niche Modelling procedure 

 

Ecological Niche  

The concept of niche was first proposed by Grinnell (1917) in his classical paper ‘The niche 

relationships of the California Thrasher’, as the sum of the ecological conditions that allows a 

species to persist and produce offspring. It is widely accepted that the real founder of the niche 

concept was Grinnell, who in a series of papers, discussed the niches of a variety of species, 

including their abiotic requirements, habitat, food, and natural enemy relationships (Grinnell, 
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1917, 1924; Grinnell and Swarth, 1913). Grinnell used the concept to map all the necessary 

conditions for a species’ existence, including physiological tolerances, morphological 

limitations, feeding habits, and interactions with other members of the community. The second 

concept about niche was proposed by Elton (1927). As per Elton niche is defined as the 

functional role which a species have in its ecosystem. However, the revolutionary concept about 

the niche was proposed by Hutchinson. Hutchinson stated, “The term niche (in Gause’s sense, 

rather than Elton’s) defined as the sum of all the environmental factors acting on the organism; 

the niche thus defined is a region of an n dimensional hyper-space.” Hutchinson differentiated 

between the fundamental niche, which represents a possibility range, and the actual occupied 

part of niche, what he called as realized niche. Since an organism is prevented from occupying 

the fundamental niche by various biotic interactions so, the realized niche is smaller as compared 

to fundamental niche (Giller, 1984).  

 

Ecological niche modeling             

For conservation and management of biodiversity detailed knowledge about the geographical 

distribution of species is crucial. However for most taxa detailed species distribution data is 

sparse and to acquire such data is labour intensive (Prendergast et al., 1999; Bowker, 2000; 

Ottaviani et al., 2004, Williams et al., 2009; Newbold, 2010, Niamir et al., 2011). Thus, 

ecologists have developed various predictive models as a means for estimating patterns of 

species distribution and informing conservation strategies. These distribution models are proving 

to be an important tool in biogeography, evolution, ecology, conservation, invasive-species 

management and for the purposes of informing IUCN Red List assessments (Fleishman et al., 

2001; Peterson and Vieglais, 2001; Boone and Krohn, 2002; Fertig and Reiners, 2002; Scott et 

al., 2002, Gaubert, 2006, Sergio et al., 2007, Buisson et al., 2010, Cardoso et al., 2011, Jiménez-

Alfaro et al., 2012, Pena et al., 2014;) These approaches combine species occurrence data with 

ecological/environmental variables (temperature, precipitation, elevation, geology, and 

vegetation) to create a model representing species distributions (Elith and Leathwick, 2009) 

(Fig.1.) Species distribution data are obtained from museums or herbarium specimens as 

georefrenced coordinates and are now increasingly getting available due to various efforts to 

digitize historical distribution records obtained from national and local natural history collections 

(Booth et al., 1999; Funk et al., 1999; Soberón, 1999; Ponder et al., 2001; Stockwell and 

Peterson, 2002; Constable et al., 2010; GBIF, 2013). Species distribution data are now 

increasingly getting available due to various efforts to digitize historical distribution records 

obtained from national and local natural history collections (Constable et al., 2010; GBIF, 

2013).The use of species distribution models has increased rapidly in the last two decades and 

recent years have seen the development of several new modelling techniques (Stockwell and 

Noble, 1992; Phillips et al., 2006, Peterson et al., 2011). While distribution models have been 

applied primarily to terrestrial species, there have also been several attempts to model marine 

species as well (Wiley et al., 2003; Hawkes et al., 2007). Several authors have argued that 

distribution models capture the realized niche, even if they only use abiotic variables in the 
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models, because data on species occurrence used to build models describe actual (realized) 

distributions (Guisan and Zimmermann, 2000; Austin, 2002; Pearson and Dawson, 2003; Araújo 

and Guisan, 2006). On the other hand, Soberón and Peterson (2005) argue that, unless variables 

describing biotic interactions or dispersal limitation are included as explanatory variables, 

distribution models generally capture the fundamental niche. An exception to this rule occurs 

when biotic variables co-vary with abiotic variables, in which case the model may more closely 

approximate the realized distribution (Soberón and Peterson, 2005). 

Modelling approaches 

A large number of methods for modelling are in vogue (Guisan and Zimmermann 2000; Scott et 

al., 2002; Guisan and Thuiller, 2005; Hegel et al., 2010; Grenouillet et al., 2011) (Table 1) and 

evaluating the relative performance of different methods remains a continuous challenge in 

ecology and conservation biology (Loiselle et al., 2003; Thuiller, 2003; Ottavianiet al., 2004; 

Vaughan and Ormerod, 2005; Elith et al., 2006; Pearson et al., 2006, Elith and Graham, 2009). 

In general, the various methods used in  species distribution modelling can be classified in two  

categories, one set of methods require species presence and absence data for model construction 

and other set of methods rely on presence only data for making predictions. Presence-only data 

differ from presence–absence data in that they indicate locations where the target organism was 

observed to occur, but cannot be used to define locations where the organism does not occur. 

Predictions based on presence-absence or abundance data are more robust because it gives 

valuable information about surveyed locations (Phillips et al., 2009) and at the same time 

absence records convey valuable information regarding a habitat that is unsuitable or habitat that 

is suitable but is unoccupied, perhaps because of inaccessibility. This idea is commonly linked to 

the concept of modelling potential distributions (Jimenez-Valverde et al., 2008). However, 

absence data are also sometimes viewed as misleading because the species or environment is not 

at equilibrium (e.g., invasions, climate change) or the species not easily detected. Data from 

various sources like herbaria, museums have immensely contributed to presence-only models of 

species distribution for plant and animal species (Ponder et al. 2001; Williams et al. 2002; 

Constable et al., 2010; GBIF, 2013). Presence-only information is also much more available and 

requires much less collection effort than presence–absence information.  

Table 2: Various types of environmental data used in species distribution models and their web 

source (Source: Barik et al. 2012). 

Environmental variables 

 

Web address 

Climatic variables (including 

precipitation and temperature) 

 

http://www.worldclim.org/ 

http://www.cru.uea.ac.uk/ 

http://gisweb.ciat.cgiar.org/GCMPage/download_sres.html 

http://pmip.lsce.ipsl.fr/http://www.ncdc.noaa.gov/paleo/ 

http://www.worldclim.org/
http://www.cru.uea.ac.uk/
http://gisweb.ciat.cgiar.org/GCMPage/download_sres.html
http://pmip.lsce.ipsl.fr/
http://pmip.lsce.ipsl.fr/
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Climate envelopes  

Climate envelope models are a type of species distribution models that predict suitable 

environments for a species based on climatic variables. These models define climate envelops for 

a species by comparing species known occurrences with climatic conditions prevailing at the 

occurrence site. Climate envelopes use only records of species presence, and thus may be useful 

when information about species absence is not available (Elith et al., 2006). The most commonly 

used climate envelope model is BIOCLIM (Busby, 1986; Nix, 1986). It was first used to model 

plant species distribution in Australia, using one-by-one degree latitude–longitude grid cells. In 

its simplest form it produces a binary prediction of presence and absence, but it can also produce 

a prediction of relative environmental suitability by using different proportions of the species 

occurrence data to define the climate envelope. In some studies, BIOCLIM has been reported to 

model the distributions of species reasonably well (Penman et al., 2005; Finch et al., 2006; 

Richardson et al., 2006). However, in comparisons of several techniques, BIOCLIM has 

Vegetation type, tree cover 

 

http://edcdaac.usgs.gov/glcc/glcc_version1.html#Global 

http://glcf.umiacs.umd.edu/data 

http://edcimswww.cr.usgs.gov/pub/imswelcome 

Physiographic/topographic/bathy

metric data (elevation, slope, 

aspect) 

 

http://edc.usgs.gov/products/elevation.html 

http://www2.jpl.nasa.gov/srtm/dataprod.htm 

http://www.worldwildlife.org/freshwater/hydrosheds.cfm 

http://ibis.grdl.noaa.gov/cgi-bin/bathy/bathD.pl 

Marine Data 

 

http://www.nodc.noaa.gov/OC5/indprod.html 

http://www.cpc.noaa.gov/products/predictions/30da 

y/SSTs/sst_clim.html 

Hydrology (drainage basin, flow 

accumulation, flow direction) 

http://edc.usgs.gov/products/elevation/gtopo30/hydro/index.html 

Landuse, Landcover 

 

http://glcf.umiacs.umd.edu/data/ 

http://edcimswww.cr.usgs.gov/pub/imswelcome 

http://glovis.usgs.gov/ 

http://www.landsat.org/ortho/default.html 

http://www-gvm.jrc.it/glc2000/ 

Soils (Soil type, texture, Water 

holding capacity, pH) 

http://www.fao.org/AG/agl/agll/prtsoil.stm 

http://www.daac.ornl.gov/SOILS/soils_collections.html 

Socio-economic data 

(Anthropogenic biomes, Gridded 

population of the world, Human 

footprint, Net primary 

productivity)  

 

http://sedac.ciesin.columbia.edu/data.html 

 

http://edcdaac.usgs.gov/glcc/glcc_version1.html
http://glcf.umiacs.umd.edu/data/
http://edcimswww.cr.usgs.gov/pub/imswelcome/
http://edc.usgs.gov/products/elevation.html
http://www2.jpl.nasa.gov/srtm/dataprod.htm
http://www.worldwildlife.org/freshwater/hydrosheds.cfm
http://ibis.grdl.noaa.gov/cgi-bin/bathy/bathD.pl
http://www.nodc.noaa.gov/OC5/indprod.html
http://www.cpc.noaa.gov/products/predictions/30day/SSTs/sst_clim.html
http://www.cpc.noaa.gov/products/predictions/30day/SSTs/sst_clim.html
http://edc.usgs.gov/products/elevation/gtopo30/hydro/index.html
http://glcf.umiacs.umd.edu/data/
http://edcimswww.cr.usgs.gov/pub/imswelcome/
http://glovis.usgs.gov/
http://www.landsat.org/ortho/default.html
http://www-gvm.jrc.it/glc2000/
http://www.fao.org/AG/agl/agll/prtsoil.stm
http://www.daac.ornl.gov/SOILS/soils_collections.html
http://sedac.ciesin.columbia.edu/data.html
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emerged amongst the worst-performing (Elith, 2002; Ferrier et al., 2002; Loiselle et al., 2003; 

Elith et al., 2006; Tsoar et al., 2007). It has a tendency to over-predict observed distributions 

(Elith 2002), particularly for more widespread species (Finch et al., 2006). Most examples of 

BIOCLIM’s poor performance have come from studies focusing on small areas. BIOCLIM may 

be useful for modelling the broad environmental limits to distributions over very large study 

areas. DOMAIN (Carpenter et al., 1993) is a better performing technique as compared to 

BIOCLIM and has been shown to overcome some of the problems of over-prediction associated 

with BIOCLIM (Carpenter et al., 1993). In comparison of modelling techniques its performance 

has been generally intermediate (Tsoar et al., 2007; Wisz et al., 2008) to poor (Elith et al., 2006), 

although relatively better than other techniques with very small number of presence records 

(Wisz et al., 2008). 

 

Logistic regression  

Logistic regression modeling techiniques model species distributions as a binomial response 

against climate predictors. Among various logistic regression modeling techiniques ‘General 

Linear Models’ (GLMs) have been used widely to predict the distribution of species because the 

model outputs are easy to interpret and also the software is available freely (Wintle et al., 2005). 

GLMs have generally performed very well in comparisons of different modelling techniques 

(Hirzel et al., 2001; Loiselle et al., 2003; Elith et al., 2006; Meynard and Quinn, 2007; Wisz et 

al., 2008), although relatively poorly with very small sample sizes (Pearce and Ferrier, 2000). 

The second category of logistic regression modelling techiniques is ‘Generalized Additive 

Models’ (GAMs). GAMs have also performed very well in published studies, and often 

somewhat better than GLMs (Pearce and Ferrier, 2000; Ferrier et al., 2002; Moisen and Frescino, 

2002; Zaniewski et al., 2002; Elith et al., 2006; Wisz et al., 2008), although they are even more 

sensitive to small sample sizes (Wisz et al., 2008). As with GLMs, the software is freely 

available and relatively easy to use, but the output is not easy to interpret (Wintle et al., 2005).  

 

Maximum Entropy Method (Maxent) 

Phillips et al. (2006) introduced the use of the maximum entropy method (MaxEnt) for 

modelling species geographic distributions with presence-only data. MaxEnt is a general-purpose 

machine learning method with a simple and precise mathematical formulation. It has many 

important advantages over other methods of modeling species distributions (Elith et al., 2011). 

Maxent uses principle of maximum entropy (Jaynes, 1957) to estimate the distribution of a 

species. Maximum-entropy is quite useful for modelling species geographic distributions, a 

critical problem in conservation biology and is currently one of the most popular methods used 

in species distribution modelling (Elith et al., 2006, Pearson et al., 2007; Monterroso et al., 2009; 

Williams et al., 2009; Torres et al., 2010). The models can be easily interpreted by experts, a 

property of great practical importance (Phillips et al., 2004). Other advantages of Maxent 

include. (i) it works on presence only data and does not require data on species absence ( Phillips 
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et al. 2006; Elith et al., 2006; Pearson et al., 2007; Papes and Gaubert, 2007, Wisz et al., 2008,  

Rebelo and Jones, 2010; Elith et al., 2011). (ii) the predictive power of maxent has  been proven 

to outperform other modelling methods (Elith et al., 2006; Hernandez et al., 2006; Pearson et al., 

2007, Wisz et al., 2008; Williams et al., 2009; Braunisch et al., 2011). (iii) it can utilize both 

continuous and categorical data, and can incorporate interactions between different variables. 

(iv) It has a precise mathematical definition, hence easy for analysis (v) over-fitting can be 

avoided by using regularization.  

Genetic Algorithm for Rule-set Prediction (GARP) 

Genetic Algorithm for Rule-set Prediction is another machine-learning modelling technique that 

has seen widespread use. GARP develops a set of if-then statements which decide whether the 

species will be present or absent as per the environmental conditions of the given grid (Stockwell 

and Noble, 1992). It is a presence only model, however there is a provision to include absences 

by sampling a set of pseudo absences from the pixels were the species has not been recorded. 

Many studies have shown that GARP models species distribution accurately (Peterson and 

Cohoon, 1999; Peterson et al., 2002; Loiselle et al., 2003; Peterson and Kluza, 2003; Peterson 

and Robins, 2003., Raxworthy et al., 2003; Papes and Gaubert, 2007). However in comparison to 

other several modelling techiniques, GARP has been reported to perform relatively poorly (Elith 

et al., 2006; Pearson et al., 2007) and has a tendency to over predict the distributions (Peterson 

and Robbins 2003). On the other hand GARP has been shown to be effective in modelling 

species with small sample sizes (Solano and Fera, 2007; Wisz et al., 2008). 

Table 1 Published predictive SDM packages, reference paper, related modelling methods, and 

web links. 
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Variable choice. 

The distribution of a species is determined by a number of factors and selection of an appropriate 

variable is important to get accurate predictions (Parolo et al., 2008; Peterson and Nakazawa, 

2008).Using too many explanatory variables in distribution models will cause overfitting and too 

less variables can lead to under prediction of species distributions (Chatfield, 1995; Elith et al., 

2006; Wisz and Guisan, 2009). The choice of environmental variables for modelling is often 

driven by the availability of variables in a format suitable for modelling. As a result, many 

distribution-modelling exercises have considered only variables describing the abiotic 

environment, such as climate, edaphic factors and topography, or non-specific biotic variables, 

such as land cover, habitat and plant productivity (Elith et al., 2006) (Table 2). Many of the 

variables that can be obtained as maps covering entire study areas are those that have only an 

indirect effect on species (Austin, 2007). Very few studies have made a priori hypotheses 

regarding the determinants of species distributions, and then used these variables to model 

distributions. However, the aim is often to model the distributions of many species 

simultaneously. In this case, choosing directly relevant variables for each species in turn would 

probably be too time-consuming. Climate and habitat variables have repeatedly been shown to be 

very good correlates of species distributions (Guisan and Hofer, 2003; Araújo et al., 2005; 

Wintle et al., 2005; Elith et al., 2006; Guisan et al., 2006; Anderson et al., 2012) and many have 

been hypothesized to have direct effects on species occurrence (Turner et al. 1987; Hawkins et 

al., 2003). Therefore, it will often be desirable to build models using these readily-available 

rather than developing a series of variables for each species. 

 

Spatial scale  

Habitat assessment for rare and endemic species at multiple scales is an important component of 

conservation planning. The prior knowledge and understanding of the theory and processes 

which drive the observed distributional patterns of rare and endemic plant species is crucial, so 

that appropriate modelling based on appropriate scale can be employed (Guisan et al., 2005). 

Since the factors which influence the distribution of species and biodiversity patterns are highly 

dependent on spatial scale, with factors operating at a finer scale being subordinated to factors 

operating at a larger scale (Milbau et al., 2008). Hence, the use of data at appropriate scale for 

those variables which are crucial for species distribution would be cost effective for planning 

conservation strategies. The most appropriate scale and factors for species distribution modelling 

occur in hierarchic manner from global to local scales; at global scale climate appears to be the 

dominant factor determining species distribution, while at regional to local scales topography 

and land use are more important (Figure 2) (Pearson and Dawson, 2003; Guisan et al., 2005). 

However, the biotic interactions and other micro climatic factors finally shape the species 

distribution at the finest scales (Willis and Whittaker, 2002, Pearson and Dawson, 2003). 

Although climatic factors can be useful both at global and local scales, the distribution of rare 

and endemic plant species are often associated with specific vegetation types, including land-

cover data and hence these factors can significantly enhance the predictive potential of models to 
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predict the species suitable areas (Pearson et al., 2004; Gogol-Prokurat, 2011; Vicente et al., 

2011). Thus, despite large-scale factors being generally dominant, small-scale factors are more 

important to make precise and accurate predictions on small spatial scale (Milbau et al., 2008). 

These models can improve spatial allocation of conservation efforts and resources, and facilitate 

strategic planning to minimize impacts on rare plant resources and potential land use conflicts 

(Wu et al., 2000). As an example fine scale environmental variables at local scale can result in 

smaller total areas of habitat predicted as suitable for rare species, thus making the use of 

predictions for conservation planning more meaningful (Gogol-Prokurat, 2011).  

 

Fig.2: Hierarchical modelling framework proposed by Pearson and Dawson, (2003).  

Applications of species distribution models  

Species distribution models find immense applications in the field’s ecology and conservation 

biology (Table 3), some of the applications are:  

a)  Conservation of species 

Species distribution models have been widely and successfully used in many conservation 

biology studies mainly focusing on conservation issues (Brotons et al., 2004; Niamir et al., 2011; 

Jiménez-Alfaro et al., 2012, Pena et al., 2014). Species distribution models are widely used in 

making decisions regarding the conservation of particular, often threatened, species and guiding 

surveys for species (Cano Carmona et al., 2019). For example, Walther et al. (2007) modelled 

the poorly-known wintering distribution of the threatened aquatic warbler (Acrocephalu 
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spaludicola) in sub-Saharan Africa, proposing that the model be used to direct surveys in order 

to increase knowledge about the specie´s distribution. Likewise, Guisan et al. (2006) used 

distribution models for alpine sea holly (Eryngium alpinum) in Switzerland to guide field 

surveys, leading to the detection of seven new populations. Raxworthy et al. (2003) discovered 

seven new species of chameleon in Madagascar on the basis of their distribution models. Data 

from the new surveys can be used to build more accurate distribution models, which can in turn 

be used to direct further surveys, and so on (Guisan et al., 2006). Models can also be used to 

identify potential areas for species reintroductions (Rodríguez et al., 2007). For example, one 

study (Klar et al., 2008) modelled the distribution of European wild cats (Felis silvestris) in 

Germany. It was suggested that a suitable, but unoccupied, area could be used for reintroductions 

of the species (Klar et al., 2008). Similarly, Adhikari et al. (2012) modelled the suitable habitats 

for reintroduction of Illex khasiana a critically endangered species of eastern Himalayan region 

and identified the suitable habitats were the species can be reintroduced. Species distribution 

models have been recently used to frame the reserve designs and protected areas and ultimately 

identifying priority areas for conservation (Margules et al., 2002).Species distribution models 

can also be used to infer the causes for species decline. For example, Southgate et al. (2007) 

developed distribution models for the bilby (Macrotis lagotis) in Australia to assess different 

hypotheses for its decline. Nogués-Bravo et al. (2008) used distribution models to investigate the 

extent to which the extinction of the woolly mammoth (Mammuthu sprimigenius) was caused by 

environmental change or by an increase in human hunting pressure, concluding that both factors 

may have played a role. 

 

a)  Predicting future distributions of species 

 

Species distribution models can be used to predict how the distributions of species will change in 

the future as a result of climate and human induced land-use changes (Bellard, 2012; Watson, 

2013; Gritti et al., 2013; Watson et al., 2014; Lourenço-de-Moraes et al., 2019)). A distribution 

model is built for the current time, using species occurrence and climate data. This model is then 

updated to reflect predicted changes in the climate or land use in the future. Many workers have 

used distribution models in this way, mostly at regional or global scales (Huntley, 1995; 

Saetersdal et al., 1998; Iverson et al., 1999; Bakkenes et al., 2002; Berry et al., 2002; Peterson, 

2003; Miles et al., 2004; Thomas et al., 2004; Thuiller et al., 2005; Levinsky et al., 2007; Hole et 

al., 2009; Randin et al., 2009, Bellard et al., 2012) but sometimes at more local scales (Peterson 

et al., 2001; Peterson et al., 2002). Most have considered only changes in the climate, but land-

use changes also known to have important effects on the distributions of species (Thuiller, 2007), 

and very few have considered these. 

b) Predicting the extent of species invasions 

One of the important applications of Species distribution models is prediction of suitable habitats 

for species invasion at regional (Mercado-Silva et al., 2006; Muñoz and Real, 2006, Uma 

Shanker et al., 2013; Kannan et al., 2013) and global scales (Thuiller et al., 2005; Bradley et al., 
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2010; Gallien, 2012). Such projections can be used, for example, to predict where invasive 

species will be able to establish and survive outside their native ranges. A number of studies 

have used distribution models in this way, often finding that invasions are predicted very 

successfully (Peterson and Vieglais, 2001; Peterson and Robins, 2003; Thuiller et al., 2005; 

Herborg et al., 2007).On the other hand, in some cases the distributions of species in their 

invaded ranges are predicted very poorly by distribution models based on data from their native 

ranges (Randin et al., 2006; Broennimann et al., 2007). Model failure may be caused by 

differences in the fundamental or realized niches in the invaded range (Broennimann et al., 2007; 

Steiner et al., 2008). Differences in realized niches may result from species not yet having 

reached equilibrium with climate in the new range owing to dispersal limitation, from the species 

not having been in equilibrium with climate in its native range, or from changes in interactions 

among species (Thuiller et al., 2005; Steiner et al., 2008). In species invasions, suitability of 

climate is only one of several factors that determine invasion success. Propagule pressure, 

characteristics of the invading species, species composition of the invaded area and human 

influence can also be important (Thuiller et al., 2005; Thuiller et al., 2006; Ficetola et al., 2007;  

Ficetola et al., 2009). 

c)  Addressing ecological and evolutionary questions  

Species distribution models can also be used to tackle more fundamental ecological or 

evolutionary issues (Zimmermann et al., 2010; Guisan et al., 2006, 2007; Franklin, 2010; 

Alvarado-Serrano and Knowles, 2014). For example, they have been used to assess the extent to 

which climate drives distribution patterns compared to other factors, such as interactions among 

species (Araújo and Luoto, 2007), dispersal limitation (Svenning et al., 2008) or habitat. Other 

studies have used distribution models to test whether niches are evolutionarily conserved by 

comparing modelled niches among closely-related species (Peterson et al., 1999). 

Conclusions: Ecological niche modeling is now increasingly being used for addressing various 

ecological issues like invasion of species, effects of climate change on species distributions and 

conservation of species. Different methods have been used in past and many are in practice 

currently. Our review gives a comprehensive outlook of the methods and applications of 

Ecological niche models used in ecology. This review will serve as a basic information source 

for those intended to undertake deep research studies in the field of Ecological niche modeling. 

The scale at which a species is modeled and the set of variables which are used to determine the 

geographic distribution of a species are of paramount importance. These two issues determine to 

a greater extent the success and accuracy of models, as choosing irrelevant environmental 

predictors and inappropriate scale will lead to erroneous and inaccurate predictions. These two 

parameters have been broadly reviewed in present manuscript. In the end we present a lucid 

description about applications of Ecological niche models to highlight the vast areas were Niche 

modeling could be used in ecology. 
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