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Abstract ; This paper investigates human mobility patterns in an urban taxi transportation system. This work focuses on 

predicting human mobility from discovering patterns of in the number of passenger pick-ups quantity (PUQ) from urban 

hotspots. This paper proposes an improved ARIMA based prediction method to forecast the spatial-temporal variation of 

passengers in a hotspot. Evaluation with a large-scale real- world data set of 4 000 taxis’ GPS traces over one year shows a 

prediction error of only 5.8%. We also explore the applica- tion of the prediction approach to help drivers find their next 

passengers. The simulation results using historical real-worlddata demonstrate that, with our guidance, drivers can reducethe 

time taken and distance travelled, to find their next pas- senger, by 37.1% and 6.4%, respectively. 

 

Keywords; urban traffic, GPS traces, hotspots, human mo- bility prediction, auto-regressive integrated moving average 

(ARIMA) and wireless networking technologies, a growing number ofcomputing devices and sensors are embedded in our 

dailyenvironments, and becoming ubiquitous. As a result, muchinformation regarding human mobility, such as location, mo- 

tion, and behaviors of vehicles, is becoming easily accessi- ble. From these digital footprints, it is feasible for researchers to 

extract social and community intelligence [1], rangingfrom urban environment dynamics [2,3] to social events [4,5].The use of 

taxis conveys much information about human urban mobility. Their movement traces can be easily obtainedfrom equipped GPS 

devices. For example, many taxi compa- nies in China are required to install a GPS device in each of their own taxis for 

administrative purposes. This provides aninfrastructure to record the current and historical taxi traces 
data for predicting urban human mobility. 

This paper investigates human mobility patterns in an ur- ban taxi transportation system. We focus on discovering pat-terns of 

pick-up quantity (PUQ) for those urban hotspots with 

a relatively large number of passengers getting in or out of 

Introduction 
 

Smart city, an emerging worldwide technology, aims to pro-mote sustainable economic development and high quality of life 

through intelligent management of resources, where understanding human mobility is one of the most important aspects. With 

the rapid development of embedded systems, 

taxis. We propose an adaptive watershed algorithm to cluster hotspots. This algorithm can naturally determine the edges of 

hotspots according to the variation of PUQ within an ur- ban area. Prediction of urban human mobility can not only help  

people to experience a comfortable travel, but also helpthe government to improve the planning of the transportationsystem in a 

city. We develop an improved auto-regressive in- 
 

to forecast how many passengers will be in a certain hotspotin the next time interval. We also explore the application of 

 
the prediction approach to helping drivers to find their next passengers. 

Section 2 outlines related work. Section 3 describes the data set used in this paper, and introduces our data set prepro-cessing 

and hotspot extraction methods. Section 4 presents and evaluates the improved ARIMA based method for pre- dicting human 

mobility in a hotspot. An application which aims to help taxi drivers find next passengers is proposed andevaluated in Section 5. 

Finally we conclude the paper in Sec-tion 6. 

al. [16] discovered anomalous driving patterns from taxi GPStraces, targeting applications such as automatic detection of taxi 

fraud or road network changes in modern cites. 

There also exits work that aims to provide guidance to passengers or taxi drivers to make their life or work more convenient. 

Phithakkitnukoon et al. [17] focused on predict-ing the distribution of vacant taxis in the city with a naive Bayesian classifier, 

which considers several factors, such as weather, day of the week, and time of day, to improve per- formance. The prediction is 

performed on a large region par- 

tition (1 km × 1 km). Chang et al. [18] predicted taxi de- 
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Related work 
Since a large amount of human position data has become ac- cessible, the patterns of human movement have been investi- 

gated in recent years. Several approaches used mobile phone traces [6] to analyze human mobility pattern. With the finger- 

print of cell-phone, Girardin et al. [7] focused on the pattern of tourists present in a public place. González et al. [8] uncov- 

ered the spatial-temporal regularity of human mobility. Mc- Namara et al. [9] analyzed historical collocation information of 

people in a day and made media sharing more efficient with this information. Most of this work focuses on mining the internal 

structure of human movement. 

Some work explores large scale public transportation data sets for analyzing the urban traffic environment. Froehlich et al. [10] 

investigated the dynamics of the city of Barcelona from a shared bicycling system. They analyzed the relation- ship between 

the behavior patterns and the location of bicy- cle stations, where four prediction models were used to fore- cast the number of 

available bicycles in stations. Based on the same bicycling system, Kaltenbrunner et al. [11] detected temporal and geographic 

mobility patterns within Barcelona and used an ARMA model to predict the number of bicycles in a station to help improve the 

spatial deployment of stations. Similar to mobile phone IDs, taxi GPS trajectories con- vey much useful information. Ziebart et 

al. [12] built valuable navigation services by reasoning on driver behavior. Yuan et al. [13] provided navigation services by 

extracting the expe- rience of taxi drivers from historical taxi GPS footprints. Liu et al. [14] revealed the strategy of taxi drivers 

by comparing the performance of top drivers and normal drivers. Zheng et al. [15] detected flawed urban planning using the 

GPS tra- jectories of taxicabs traveling in urban areas. These GPS trajectories can evaluate the effectiveness of urban planning, 

such as a newly built roads and subway lines in a city, and remind city planners of a problem that had not been previ- ously 

recognized when they conceive future plans. Zhang et 

mand in urban environments. First, they filter the historical data set using current contexts, such as location, time, and weather. 

Then the filtered data are clustered and mapped to road names semantically. However the authors of [18] do not consider the 

distribution of vacant taxis around the clusters they provide, which influence the real demand. Ge et al. [19] presented  a 

method to recommend a sequence of pick up points or potential parking positions to taxi drivers. By track- ing this sequence, 

taxi drivers pay the least expected cost to find their next passenger. Yuan et al. [20] presented a rec- ommender system, for taxi 

drivers and passengers wishing to hail a taxi, using the knowledge of passenger mobility pat- terns and taxi driver pick-up 

behaviors learned from the GPS trajectories of taxicabs. For a taxi driver, they recommend a parking place using a probability 

model which maximizes the profit of taxi drivers who takes the recommendation. 

For the prediction problem, the work in [10,11,17] is sim- ilar to ours. We predict the pick-up/set-down rate of passen- gers at a 

hotspot, while [10] and [11] predict the number of bi- cycles in bicycle stations, and [17] predicts the number of va- cant taxis. 

According to the methods used in [18–20], the im- mediate historical data cannot be exploited to make a recom- mendation; 

however, our recommendation is mainly based on the most immediate historical data. In this way, our method can make a  

more timely reaction to abnormal changes in taxi and human mobility patterns. 

 

Data set preprocessing and hotspotextraction 
The taxi GPS trace data set used in this paper is providedby the Hangzhou City Traffic Bureau. Hangzhou, is lo- cated in he 

Southeast of China, and is the capital of Zhe- jiang Province. It is one of the most famous tourist cities in China. According to 

the annual report of the Hangzhou gov-ernment, there were more than 53.24 million tourists visit- ing Hangzhou from all over 

the world in 2009. The taxi GPS traces were generated over a period of 385 days (from April 1, 2009 to April 20, 2010) [21]. 

During this period, the number of taxis with GPS devices installed increased from 4 597 to 7 475, while the total number of 

taxis in the city remained al-most unchanged. The status of GPS enabled taxis is sampled 
sliding window. 

Incorrect records would result in a non-smooth trajec- tory with abnormal movement. Given a trajectory, Function f (recordi, 

recordj) is defined as 

with a fixed time interval of approximately 60 s. In addition, 

−1, Velocityi, j > Threshold, i ≠ j; 

1, Velocityi, j  “ Threshold,  i ≠ j; i 

set contains approximately three billion records. Each record 

Data set preprocessing 
 

Due to the multipath effect of GPS signal and device faults, the GPS position may sometimes be incorrect. In addition, the 

METER STATE may also be incorrect due to invalid oper- ations made by a driver. For example, when a taxi driver goesoff 

work, they may keep the taximeter turned on although there is no passenger in the taxi. To clarify the real vacant and 

occupied trajectories (trajectories with and without pas- senger, respectively), a data preprocessing step is performed as 

follows: 

Step 1 Extract the raw taxi trajectories from GPS records. 
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A shift of METER STATE is taken as a pick-up/set-down event, i.e., a METER STATE change from 0 to 1 suggests a 

pick-up event, and a shift from 1 to 0 of METER STATE in-dicates a set-down event. An occupied trajectory is defined as a 

series of records beginning with a pick-up event and end- ing with a set-down event, otherwise a vacant trajectory is de-fined 

as a series of records from a set-down event to a pick-up event, illustrated in Eq. (1). 

where Velocityi, j = L1(Posi, Posj) (T imei − T ime j) , andL1(Posi, Posj) is the city block distance. Threshold is setto 120 km/h 

according to urban traffic regulation. Records with velocity greater than the threshold indicate that there 

is an abnormal movement, therefore they should be re- moved. We define W as the abnormal velocity indicator for the ith 

record, which is defined as the sum of the neighboringf (recordi, recordj) 

 
j=r 

wi = f (recordi, recordj), (3) 

j=−r 

 

where r is the width of the sliding window. If wi < 0, recordiis abnormal and should be removed. We heuristically set r to3. 

 
Step 3 Filtering taxis with high flipping. 

A limited number of taxis may produce a dramatically large number of trajectories in a single day, which indi- cates that 

the taximeter flips at an abnormally high fre- quency. These indicate abnormal taxi operation, likely a faultwith the meter. 

These abnormal traces are removed. 

 

Step 4 Filtering invalid occupied trajectories. 

We filter the occupied trajectories whose duration and av- erage speed is out of a normal range. We analyzed the distri- 

bution of the duration and average speed of occupied trajec- tories. We found that a majority of all valid trajectories fall 

between 100–5 000s, so we use these as the limits for valid trajectories. Using similar analysis the average speed range is set 

to be 1.5 m/s to 40 m/s. All the occupied trajectories that do not satisfy these conditions will be considered to be invalid. 

Hotspot extraction 

Hotspots are urban areas in which pick-up/set-down events occur more frequently. The activities in hotspots 

can char- acterize the spatial mobility pattern of the whole city. Our 
Step 2    Filtering incorrect records from a trajectory  with a hotspot extraction procedure is as follows: 

1) 4 000 taxis are randomly sampled for analysis to avoidthe influence of variation in the quantity of taxis. 

2) Pick-up/set-down events are extracted from historical taxi trajectories. 

3) The map of Hangzhou is divided into blocks of 10 m × 10 m, pick-up and set-down events are tallied in PUQ and 

SDQ, respectively. The PUQ and SDQ for 

each block in a specified period are counted and blocks with a PUQ or SDQ greater than a threshold are labeled valid 

blocks. Adjacent valid blocks are then merged intorough hotspots. 

4) An adaptive watershed algorithm, described in the next subsection, is employed to split rough hotspots into smaller 

hotspots. Some regions in an urban area havea relatively high value of PUQ/SDQ. If we set a sin- gle threshold for 

valid blocks, we will probably get very large rough hotspots in these regions. Taking roughhotspots directly as hotspots is 

not reasonable, becausethe value of PUQ/SDQ could vary greatly within the rough hotspots, which means they could 

contain sepa- rate hotspots. 

Figure 1 shows some hotspots extracted from the area around the West Lake. The gray regions indicate the ex- tracted 

hotspots. Adjacent hotspots are plotted in different grayscales. 
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Fig. 1 Illustration of hotspots extracted from around the West Lake (hotspots are marked in gray). Adjacent hotspots are plotted in different grayscales 

 
3.2.1 Adaptive watershed algorithm for hotspot splitting 

The watershed algorithm is a traditional image processing technique to segment an image [22]. In image segmentation, a 

gray-level image is regarded as a topography, the gray levelof a pixel indicates its altitude; when flooding this supposi- tional 

topography from the bottom, the edge of this image canbe sketched by building a barrier to avoid the connection of adjacent 

basins, since the edges of a gray-level image have the local maximum gray level. 

To obtain hotspots from rough hotspots, a rough hotspot with PUQ/SDQ density can be regarded as a topogra- phy. 

Splitting of the rough hotspot is to determine the edges of this suppositional topography. Different from the edges ofa gray- 

level image, the edges in rough hotspots are a set of blocks whose PUQ/SDQ is locally minimal. To avoid over- splitting,  

we set a minimal radius for a rough hotspot; any rough hotspot whose radius is smaller than the threshold willnot be split. 

 
Algorithm 1: Adaptive watershed-based hotspot splittingalgorithm 

nput: B is the set of blocks in rough hotspot C 

1. Hotspots ← Φ; 

2. Blocks ← sort(B.PUQ, descend); 

3. Unlabeled ← B; 

4. Labeled ← Φ; 

5. while is_connected(Unlabeled) /∗test if blocks in Unla-beled are 8-connected∗/ 

6. b ← min(Unlabeled.PUQ); 

7. Labeled. join(b); 

8. Unlabeled.remove(b); 

9. S  ← subsets(Unlabeled); /∗find out subsets of blocks inwhich blocks are 8-connected∗/ 

10. n ← Blocks.size; 

11. if !is_empty(Labeled) 

12. for i = 1 to n do 

13. if !is_labeled(Blocks(i)) 

14. neighbors ← get_neighbors(Blocks(i for all nei ∈ neighbors 

15. if is_labeled(nei) 

16. subset_index ← get_subset_index 

(Blocks(i)); 

17. S (subset_index). join(nei); 

18. Labeled.remove(nei); 

19. Unlabeled. join(nei); 

20. for all s ∈ S 

21. if s.radius > minimal 

22. Blocks ← s; 

23. goto 2; 

24. else 
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25. Hotspots. join(s); 

26. Return Hotspots; 

 

 
 

Given a rough hotspot, this hotspot contains a set of connected blocks; Algorithm 1 illustrates the adaptive 

watershed-based hotspot splitting algorithm. 

 

Prediction of human mobility for a hotspot 

To measure the temporal spatial human mobility in Hangzhou, a day of 24 hours is uniformly divided into D timesegments 

(TS) with a D-hour length, where D is called the time segment length. For example, when D is 3 h, a day is divided into eight 

time segments; when D is 20 min, one dayis divided into 72 time segments. 

In this section, four algorithms are evaluated to predict the PUQ value of hotspots. We use a naive method, Bayesian net- 

works, auto-regressive integrated moving average (ARIMA)[23], and an improved ARIMA. ARIMA is a classical ap- proach 

for time series analysis, and the improved ARIMA is an improvement over ARIMA by considering the repeatedpattern of 

PUQ in hotspots. 

Prediction methods 

Naive method 

Figure 2 depicts the mean and variance of PUQ and SDQof two hotspots throughout a day. The relatively low vari- ance 

indicates that the PUQ of a hotspot has a repetitive pattern with the period of one day. Given a time series of 

PUQ {PUQi, i  =  1, 2 , . . . , N}, a straightforward way to pre- 

dict PUQ at a future time segment is to use the PUQ one daybefore that time segment. 

PÛ QN+1  = PUQN+1−(24/D). (4) 

Here, D is time segment length in hour. For example, sup- pose that the time segment length is set to 1 h, using the naive 

method the predicted value of PUQ at the time segment n is equal to the value of PUQ in the time segment n – 24, i.e., atthat 

time yesterday. 

Bayesian networks 
 

Bayesian networks are widely used to represent the relation- ships between random variables. They can be used for pre- 

dictions in time series analysis [10]. Given a time series of 

PUQ {PÛ Q i, i  =  1, 2, . . . , N}, PUQ i+1 can be forecasted by 

the single layer Bayesian networks model in Fig. 3, in whichCTi+1 = (i + 1) mod (24/D) is the index of time segment i+1 in a 

day. 

Original ARIMA based prediction 

ARIMA is widely used in time series analysis [23]. It is an in-tegrated generalization of the auto- 
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Fig. 3 Bayesian networks for prediction of PUQ 

 

the  prediction  of  PÛ QN .  The  ARIMA  algorithm  [23]  de- scribed as below: 

φ(B)∇d PÛ Qi = θ(B)αi, (5) 

where B is the lag operator, φ(B) is the auto-regressive pro-cess, ∇d is the differencing operator, θ(B) is moving average 

where   PÛ Qd,t+1   is   the   predicted   value   of   PUQd,t+1, q̂d,t+1  is  the  predicted  value  of  qd,t+1,  and  CDF−1(x)  is the 

inverse function of CDFt(x). 

 
The number of pick-ups in a hotspot H is influenced by many factors, such as the social function of the area surround-ing 

H, time of day, weather conditions, weekday or holiday, and special events. We can roughly group these factors into two 

categories: major factors and secondary factors. Major factors are the social functions around H and the time of day, 

secondary factors are all the other factors, some of which can-not be observed. 

 

PUQd,t  =  fm(L, t) +  fs(V), (10) 

 

where L is the social functions around H, t is the time of day,and V is the vector of secondary factors. fm(L, t) is a periodic 

process, and αi is a random walk process [23]. Eq. (5) de- 

scribes the relation between future and historical values of PÛ Qi. According to  Eq. (5),  the  predicted value  PÛ QN  can be 

obtained from historical values of PUQN. 

Our improved ARIMA based method 
 

Considering the periodicity of the number of pick-up events at a hotspot, PUQi is denoted as 

PUQd,t, d = 1, 2 ,... , n; t = 1, 2 ,... , m, (6) 

i = (d − 1) × n + t, (7) 

where d is the index of the day, t is the index of time segmentin a day. The problem is to forecast the value of PUQn,t+1. The 

prediction of ARIMA is based on the value of PUQ in the nearest past few time segments. Notice the periodicity of 

PUQ/SDQ illustrated in Section 4, we improve ARIMA by considering not only the nearest historical data but also the 

periodicity of PUQ/SDQ. The improved ARIMA method is described as follows: 

• For each time segment t, the cumulative distribution function (CDF) is extracted by non-parametric estima-tion from the 

past n − 1 days. And the value of the CDF at PUQd,t is calculated. 

qd,t  = CDFt(PUQd,t) =  P(Xt < PUQd,t), (8) 

where CDFt(x) is the  CDF of  PUQ in time  segment t 

over the past n − 1 days. 
• Forecast the value of qn,t+1 with the original ARIMA. 

• Obtain the predicted value of PUQn,t+1 from qn,t+1 with 

CDF −1(x) 
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PÛ Qd,t+1 = CDF−1(q̂d,t+1), (9) 

 

 

= P(Xt < fm(L, t) + fs(V)) 

= P((Xt − fm(L, t)) < fs(V)) 

 

function, and the time period is 24 hours.In Step 1, 
 

qd,t = CDFt(PUQd,t) 

= P(Xt < PUQd,t) 

= P(Xt
J < fs(V)), (11) 

 

where X J = Xt − fm(L, t), Xt is the random number of pick-upsin time segment t of a day. Due to the periodicity of fm(L, t), 

with regard to a specific time segment t, fm(L, t) is a constant, so X J is a random variable of fs(V), which means qd,t is a 

function of V and can be denoted as 

 

qd,t = φ(V). (12) 

 
Equation (12) illustrates that qd,t measures the effect of V sep-arate from the influence of time segment and social functionsof 

H. 

 

Evaluation 

 

Evaluation methodology 

 

We selected 100 extracted hotspots with high PUQ for pre- diction evaluation. Two error measurements are employed to 

evaluate the prediction accuracy. 

(1) Symmetric mean absolute percentage error (sMAPE) [24],which is defined as 

ˆ1 PUQ − PUQ 
n 

i 

n PUQ  + PÛ Q sMAPE = 
i=1 i i 

We set the training set size of the Bayesian network to be 350 days, the training length of the ARIMA and our improved 

ARIMA methods to be 4, 7, and 14 days, the time segment length to be 1, 2, 3, 6, 12, and 24 hours. 

Performance comparison 

 

Figure 4 compares the performance of the four methods us- ing two error measures, sMAPE and NMAE. Our improved 

ARIMA achieves the best performance of the four methods both in sMAPE and NMAE. The prediction of ARIMA is based 

on the PUQ value of recent historical data, while the improved ARIMA based prediction method considers not only the 

recent historical data but also the PUQ periodic- ity. Due to the obvious periodicity of PUQ, the naive methodalso achieves 

good performance especially when the time segment is long. A shorter time segment usually leads to a more random value of 

PUQ. As a result, when the length of time segment increases, PUQ suggests a more regular period-icity, which gives the naive 

method a good performance. Thepoor performance of Bayesian networks partially results fromits simple structure. However, if 

we consider more factors in 

 
An application: helping taxi drivers findnext passengers 

 
It is important for taxi drivers to find their next passenger assoon as possible, since they can make more money in less time 

using less fuel. Skilled taxi drivers know roughly where and when there will likely be passengers nearby, since they are 

familiar with the mobility pattern of passengers in an 

urban area. However, inexperienced drivers do not have suchknowledge. Our prediction approach can be exploited to helptaxi 

drivers to find their next passengers more effectively bypredicting the PUQ of those hotspots near the current taxi po-sition. In 

our application, we use a waiting strategy: driving to the suggested hotspot and waiting there to pick-up pas- sengers. Skilled 

drivers can also benefit from our approach, because the mobility pattern is dynamic and varies over time. 
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Problem definition 

 

Assume that {hi, i = 1, 2 , . . .  , m} is a set of hotspots, {pi, i = 1, 2, . . . , m} is the position of hi, {PÛ Qt,i, i  =  1, 2, . . . , m} is the 
predicted value of PUQ in hi in time segment t. Given a 

speed from the block containing P to the block containing hi;if there are no historical trajectories from one block to an- other, 

the speed is replaced with the average speed between the nearest blocks. 

• Compute waiting time 

There are two main factors influencing the expected wait-ing time; they are the PUQ and the length of the waiting queue 

of vacant taxis in the hotspot. Since we assume that taxis join a FIFO queue at a new hotspot, the customer will take the first 

taxi in the queue. According to the assumptions both taxis and passengers arrive subject to a negative expo- nential 

distribution. 

Given a hotspot hi and time segment t, suppose that 

context (t0, P), where the current time t0 is in time segment t,and P is a position, which means that a taxi 

to the result of guiding taxis with the predicted result of ARIMA, the result with improved ARIMA achieves clear im- 

provement in the small hours. The main reason is that im- proved ARIMA outperforms original ARIMA in small hoursin 

predicting PUQ in hotspots (see Fig. 7). 

 

Fig. 7 Variation of sMAPE prediction error over a day 

 

Conclusions 

This paper addresses the prediction and application of hu- man mobility using large-scale taxi GPS traces. An adap- tive 

watershed-based hotspot extraction algorithm is pro- posed to cluster the pick-up/set-down events of taxi passen- gers. Four 

prediction methods, naive method, Bayesian net- works, ARIMA, and our improved ARIMA, are used to pre-dict the pick-up 

quantity of taxi passengers for hotspots. The improved ARIMA combines ARIMA with a prior distribu- tion of pick-up 

values, and achieves better prediction accu- racy than the other three methods. 

Based on the prediction method, an application of helpingtaxi drivers find the next passenger is presented and evalu- ated. 

The evaluation using historical taxi GPS traces suggeststhat the time cost for finding passengers can be decreased by 37.1% 

and the length of vacant driving distance decreased by 6.4%. Actually, the prediction of hotspot passengers is notonly helpful 

for drivers, but also for traffic police, passengers,and even urban planning. Our future work plans to consider the possibility of 

picking up passengers on the way to the suggested hotspot. 
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