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ABSTRACT: Networks of the Internet of 

Things (IoT) nowadays find greater widespread 

in many domains. Particularities of creation of 

IoT make the problem of their security 

monitoring rather actual; it is caused by 

necessity of processing of big amounts of 

heterogeneous data in real time. The problem 

may be solved by means of implementation of 

the parallel system for security data processing 

within IoT on the fly basing on complex event 

processing (CEP) technology.  A key 

prerequisite for enabling such approaches is the 

development of scalable infrastructures for 

collecting and processing security-related 

datasets from IoT systems and devices. This 

analysis introduces such a scalable and 

configurable data collection infrastructure for 

data-driven IoT security. It emphasizes the 

collection of (security) data from different 

elements of IoT systems, including individual 

devices and smart objects, edge nodes, IoT 

platforms, and entire clouds. The scalability of 

the introduced infrastructure stems from the 

integration of state of the art technologies for 

large scale data collection, streaming and 

storage, while its configurability relies on an 

extensible approach to modelling security data 

from a variety of IoT systems and devices. The 

approach enables the instantiation and 

deployment of security data collection systems 

over complex IoT deployments, which is a 

foundation for applying effective security 

analytics algorithms towards identifying threats, 

vulnerabilities and related attack patterns. 

 

KEYWORDS: Data collection, Internet of 

Things, security monitoring  

 

I. INTRODUCTION 

In recent years we are witnessing a 

proliferation of Internet of Things (IoT) 

deployments, which are mainly driven by 

the rising number of internet connected  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

devices that already amount to several 

billions [4]. This tendency is accompanied 

by an increase in the sophistication of IoT 

systems, due both to their increased scale 

and to the emergence of smart objects that 

exhibit semi-autonomous behavior, for 

instance, drones, robots and autonomous 

guided vehicles. In this landscape, IoT 

deployers are confronted with pressing 

security challenges, including more 

vulnerabilities and security attacks. The 

latter require new and more intelligent 

approaches to IoT security, notably 

approaches that are able to tackle complex, 

unpredictable and sometimes asymmetric 

attacks at scale [8]. 
 

In quest for novel approaches that can 

cope with this complexity, such 

approaches have been recently developed 

for specific types of IoT infrastructures 

such as Wireless Sensor Networks and 

smart grids and for specific types of 

attacks like malware detection and 

intrusion detection [1]. However, the 

current evolution of computation and 

storage technologies opens new horizons 

in the deployment and for IoT security. 
 

The use of data mining techniques (such as 

machine learning) for security monitoring 

and analysis is perfectly aligned to 

mainstream IoT architectures, including 

relevant reference architecture models. For 

example, discusses the security 

perspectives of the Reference Architecture 
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Model for Industy4.0 (RAMI4.0) and 

concludes that cross cutting security 

monitoring and analytics functions should 

be deployed for all layers of RAMI4.0. 

Another example is the Industrial Internet 

Security Framework (IISF), which 

provides the security view of the reference 

architecture of the Industrial Internet 

Consortium (IIRA) [2] and specifies a 

“Security monitoring and analysis” 

building block. The latter captures data 

about the overall state of the IoT system 

including its endpoints and connectivity 

traffic, and, accordingly, analyses it to 

detect possible security violations or 

potential system threats. Similar data-

driven monitoring and actuation 

functionalities are specified in the scope of 

the Reference Architecture (RA) of the 

OpenFog Consortium. This RA underlines 

also the importance of end-to-end security 

as an integral function of all different IoT 

scenarios and system elements, i.e., 

security support spanning from low layer 

silicon/fog devices to all upper software 

layers of the fog architecture. It follows 

that all of the above RAs specify the 

importance of data-driven security support 

that implements a “Monitor-Analyse-Act” 

cycle. 
 

Key to successful implementations of such 

a “Monitor- Analyse-Act” cycle that is in-

line with the aforementioned architectures 

is the specification of a scalable, 

configurable and responsive infrastructure 

for collecting and storing the security data 

to be analyzed. Due to the very large 

volume, variety and potentially high 

velocity of security data, such a data 

collection infrastructure should satisfy 

requirements similar to those expressed for 

BigData systems. In this paper we 

introduce a BigData oriented infrastructure 

for collecting, storing, managing and 

analyzing security data from IoT systems. 

The infrastructure addresses the scalability 

challenges outlined above, while being 

flexibly configurable in order to support 

security monitoring for different IoT 

systems. Furthermore, it incorporates 

intelligence and security contextual 

aspects. For example, the amount and rate 

of collected data may be dependent on 

certain security indicators. 
 

The presented data collection 

infrastructure is part of a wider IoT 

security monitoring, analysis and actuating 

system, which is implemented in the scope 

of the Horizon 2020 Secure IoT project 

whose objective is to provide security 

services to target IoT systems that may be 

deployed across different platforms and 

administrative domains based on 

predictive analytics. Therefore, prior to 

presenting the detailed architecture of the 

data collection infrastructure, we put it in 

the wider context of the Secure IoT 

project. The overall Secure IoT platform 

provides the means for end-to-end security 

monitoring of an IoT system, including 

protection for all functional blocks and end 

points that it comprises. To this end, 

Secure IoT integrates advanced analytics 

that provide the means for identifying and 

anticipating attacks on internet-connected 

devices, including smart objects with 

dynamic behavior. 

 

II. LITERATURE SURVEY 

M.-J. Kim and Y.-S. Yu et.al [5] explained 

the choice of Hadoop by the fact that this 

tool is currently pro most favorable for Big 

Data processing. It is Java-based 

framework with the Apache open source 

process, and it uses a relatively simple 

program model. The architecture of the wh 

proposed system includes Event Adaptor, 

CEP Analysis Engine, and Report & Event 

Generator. The system is aimed eng at 

sharing with the medical institution ERP 

systems. The CE Analysis Engine contains 

Event Collector, Data Analyzer, and 

Storage Server.  

N. Zygouras, N. Zacheilas, V. Kalogeraki, 

D. Kinane, and D. Gunopulos et.al [6] 
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presents an CEP system designed for big 

data processing for traffic management. 

The proposed system combines two 

approaches: CEP and Distributed Stream 

Processing Systems (DSPS). CEP is 

supported by Esper system. DSPS 

approach is supported by Storm system. 

Hadoop plays a role of integrator, 

combining these two approaches. In 

addition. Hadoop provides historical data 

analysis. Experimental evaluation 

demonstrated high scalability of the 

system. However, in our opinion, its use to 

monitor loT is hindered by high 

computational requirements. At the same 

time, the achieved performance values of 

the system will guide our work. 

N.P. Schultz-Meller, M. Migliavacca, and 

P. Pictzuch et.al [7] presents a CEP system 

in which High-Level Event Query 

Language is implemented which is close to 

SQL. For this language the authors 

developed algorithms for query 

optimization. The optimization criterion is 

the minimum time of the processor load.  

H. Zhang, Y. Diao, N. Immerman et.al [9] 

presents a core language for pattern 

queries in CEP, which allows to process 

complex queries more quickly. However, 

the wide use of these systems for 

monitoring of IoT networks is difficult as 

it requires additional software tools that 

support these query languages. 

A. Moraru and D. Mladenić et.al [12] 

explained framework for integrating CEP 

and data pe mining methods is discussed. 

As a use case the authors consider the 

smart cities scenario. For this reason, this 

work is of interest as an example of the 

application of CEP in IoT dat networks. 

The scenario contains a module of data 

integration and preprocessing, which 

performs data mining. However, in our 

opinion, the suggested approach requires 

significant computational costs. Therefore, 

these results are of limited use. 

D. Gyllstrom, E. Wu, H.-J. Chae, Y. Diao, 

P. Stahlberg, and G. Anderson et.al [10] 

considers the CEP system designed for 

collection, cleaning, and processing of 

RFID data. The results of the processing of 

event streams in this system are stored in 

MySQL database. Despite the fact that this 

work is a good example of the successful 

implementation of CEP technology in IoT 

networks, it cannot be used for IoT 

security monitoring as the issues of 

parallel processing of big data were not 

considered. 

 

D. Anicic, S. Rudolph, P. Fodor, and N. 

Stojanovic et.al [13] describes a system 

which enables specification and 

monitoring of complex event patterns in 

near real time and performs reasoning over 

streaming events. However, despite the 

fact that both proposed framework are 

feasible, the issues of preliminary event 

processing based on parallel computing in 

these papers were not considered. 

D. Wang, E.A. Rundensteiner, and R.T. 

Ellison et.al [14] suggests a framework 

called Active CEP, which realizes the 

correctness of concurrent stream execution 

by embedding active rule support within 

the CEP engine. Active rules help to 

maintain the integrity of the CEP 

transactions, including transactions of 

events pre- processing. However, the 

propagation of these results for parallel 

event processing in loT is untimely. 

A.K. Das , S. Zeadally , D. He et al. [3] 

presented a generalized taxonomy of 

various security protocols needed for the 

IoT environment. Their taxonomy 

included various important security 

services such as key management, user and 

device authentication, access control, 
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privacy preservation, and identity 

management. They also presented a 

detailed comparative analysis of recently 

proposed IoT-related state-of-art security 

protocols for various security and 

functionality features. Fur- thermore, they 

discussed various security challenges that 

need to be addressed to improve IoT 

security in the future. 

Liu, X.; Trappe, W.; Lindqvist, J et.al [11] 

provided by network services is privacy 

protection, such as GNRS access control. 

The access control in the GNRS protects 

the data privacy, and also increases the 

difficulty of launching attacks by 

restricting adversarial access to 

information that is essential for launching 

an attack, whatever that attack might be. 

Access control enforced at the GNRS 

query is a powerful tool as it can provide 

the GNRS mapping owner, who is 

typically the data owner or a surrogate in 

the context of IoT, the ability of choosing 

who it is willing to communicate with. 

With the support of access control in the 

GNRS, IoT devices or data owners can 

protect the IoT data’s location information 

contained in the GNRS mappings against 

unauthorized disclosure, while at the same 

time ensure the mapping’s accessibility to 

legitimate subscribers or applications. In 

addition, GNRS access control can support 

advanced services, such as allowing the 

mapping owner to decide when and where 

it is reachable. These fine-grained 

functionalities provided by GNRS access 

control make it possible to specify detailed 

policies/regulations while distributing the 

data collected by the IoT devices. 

 

III. Parallel Processing Of Multiple 

Levels Heterogeneous Data For End-To-

End Collection And Analysis With Iot 

Security Using Novel Encrypted Code 

The block diagram of parallel processing 

of multiple levels heterogeneous data for 

end-to-end collection and analysis with 

IoT security using novel encrypted code is 

represented in fig.1. 

IoT Systems (Platforms & Devices) as this  

layer comprises the various elements of 

IoT systems that can act as sources of 

security information. The elements may be 

deployed on different IoT platforms and 

span multiple administrative domains. 

 

Management and Configuration Tools 

module provides the means for managing 

and configuring the elements. In particular, 

it caters for the configuration of the probes 

and the registry, the management agents 

and their operation, as well as of the SPEP 

functionalities. Probes can be configured 

in terms of their deployment properties 

(e.g., where they reside), their data 

delivery rates, logging and data filtering, 

and so on. Likewise, the IoT probes 

registry can be configured in terms of the 

probes that are registered to it and their 

properties. 

 

Management Agents is the security 

management agents provide the means for 

interacting with field IoT systems and 

devices for the purpose of implementing 

automation and actuation functions related 

to security. The deployment of 

management agents is similar to probes, 

yet there are differences in their 

functionality and operational 

characteristics, which led us to distinguish 

them from probes. 

 

Visualization (Dashboards) provides a 

visualization of the status of the data 

collection and actuation layers. It is closely 

linked to the management and 

configuration functionalities so as to allow 

security operators and the administrators 

of the Secure IoT platform to visually 

manage the various components. 
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Fig.1: Block Diagram Of Parallel Processing Of 

Multiple Levels Heterogeneous Data For End-

To-End Collection And Analysis With IoT 

Security Using Novel Encrypted Code. 

 

 

 

Local storage refers to a local data store 

that provides persistence for the 

information that stems from the probes. It 

is characterized as “edge” or “local” data 

store as it is meant to store information 

close to the field and is distinguished from 

information that is stored at the cloud 

level. Local storage of security data can 

facilitate security intelligence based on 

edge analytics and edge intelligence, as a 

means of detecting and mitigating events 

at short/fine timescales. Note that the 

analysis of information at the local storage, 

may involve different types of analytics, 

but typically involves streaming analytics. 

 

Data Routing is responsible for 

transferring security data from the probes 

to appropriate recipients / consumers of 

IoT security information. To this end, it 

interacts both with the registry for 

discovering and accessing the available 

probes and the data consumer components 

(i.e., security applications) that have 

appropriate permissions to access and 

process these data. The data routing 

component is typically implemented 

through a high-performance streaming 

middleware. 

 

Security Policy Enforcement Point (SPEP) 

is the  module that implements security 

policy enforcement decisions that are 

driven by analytics at the data collection 

and actuation layer or at the security 

intelligence layer. The latter decisions are 

of two main types: (i) Data collection 

configuration decisions that are targeted to 

the probes, and (ii) Security actuation and 

automation functionalities. SPEP plays an 

instrumental role on the intelligence and 

adaptive properties of the data collection 

process as it provides functionalities for 

changing the configuration and operation 

of the data collection in-line with the 

security context. Examples of SPEP 

functionality include the closing of a port, 

the disabling or enabling of certain 

functionalities of IoT components and so 

on. SPEP workflows can be described in a 

IoT systems (Platforms & 

Devices) 

Management & 

Configuration Tools 

Data Routing (Message Bus 

& Streaming Middleware 

Management Agents 

Visualization (Dashboards) 

Local Storage (Edge) 

Security Policy 

Enforcement Point 

(SPEP) 

Novel encryption & 

decryption 

Monitoring & Analytics   

(Security Intelligence) 
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high level policy description language 

(e.g., RuleML) or even in the form of 

Event-Condition-Action- Post-condition 

(ECAP) pipelines. Many IoT devices use 

symmetric encryption, in which a single 

key gets used to encrypt and decrypt data. 

The fact that the data gets encrypted offers 

a secure layer of security, particularly 

compared to using hardcoded or default 

passwords, but sharing and storing the 

encryption key creates risk.The data is 

monitored in monitoring and analytics. 

 

IV. RESULT ANALYSIS 

The result analysis of a parallel processing 

of multiple levels heterogeneous data for 

end-to-end collection and analysis with 

IoT security using novel encrypted code is 

demonstrated in this section. The security 

has improved in this model. The threats 

also reduced in this design. 

The table 1 describes the performance 

analysis of the presented a parallel 

processing of multiple levels 

heterogeneous data for end-to-end 

collection and analysis with IoT security 

using novel encrypted code. 

Table.1: Performance Analysis 

Performance 

Analysis 

Security Threats 

Data collection 

and analysis 

with IoT 

security using 

novel encrypted 

code 

98 62 

Data collection 

and analysis 

with IoT 

security using 

decrypted code 

90 85 

 

 

 

The above table shows that an the 

performance analysis of the presented 

parallel processing of multiple levels 

heterogeneous data for end-to-end 

collection and analysis with IoT security 

using novel encrypted code gives high 

security, and less threats. 

Fig.2: Security Comparison Graph 

In Fig.2 security comparison graph the 

parallel processing of multiple levels 

heterogeneous data for end-to-end 

collection and analysis with IoT security 

using novel encrypted code shows higher 

security when compared with other 

models. 

Fig.3: Threats Comparison Graph 

Therefore in threats comparison graph 

shows less threats attacks for parallel 

processing of multiple levels 

heterogeneous data for end-to-end 

collection and analysis with IoT security 

using novel encrypted code when 

compared with the Data collection and 
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analysis with IoT security using decrypted 

code. 

V. CONCLUSION 

In parallel processing of multiple levels 

heterogeneous data for end-to-end 

collection and analysis with IoT security 

using novel encrypted code the approaches 

require collection and management of very 

large amounts of security data for training 

and building supervised and unsupervised 

learning systems that must be efficient and 

able to adapt to different security contexts 

and deployment configurations. It is 

therefore important to build scalable, 

extensible and well-designed 

infrastructures for collecting security data 

from all the different elements that 

comprise nontrivial systems including 

devices, edge/fog nodes and cloud 

computing infrastructures. This paper has 

shed light into the challenges of building 

such infrastructures. The presented 

solutions are configurable, scalable and 

intelligent, leveraging on existing BigData 

infrastructures.  Hence, in this analysis the 

security is achieved and threats also 

decreased because of using novel 

encrypted code. 
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