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ABSTRACT: Complex software systems have a 

large number of choices in terms of selection of 

software components and hardware architectures 

for implementation. Modern embedded systems 

are becoming increasingly multifunctional. These 

design choices create a large space of possible 

design solutions called the design space. The 

design process requires exploring through this 

design space to find valid design solutions before 

the actual implementation. DSE is the critical 

design process in which system designs are 

modeled, evaluated and, eventually, optimized for 

the various extra-functional system behaviors. 

This paper presents, a methodology Framework 

for design space exploration using Fitness 

Prediction Techniques. The scenario-based DSE 

uses a multi-objective genetic algorithm (GA) to 

identifying the mapping with the best average 

quality. In order to keep the exploration of the 

scenario-based DSE efficient, fitness prediction is 

used to obtain the quality of a mapping. This 

fitness prediction is performed using a 

representative subset of application scenarios that 

is obtained using co-exploration of the scenario 

subset space. Larger subsets will obtain a similar 

accuracy, but the DSE will require more time to 

identify promising mappings that meet the 

requirements of multifunctional embedded 

systems. Computational tests show that the 

efficiency of design exploration technique.  

 

KEYWORDS: design space exploration, fitness 

prediction, subset selection, embedded systems.  

 

I. INTRODUCTION 

Designers of modern embedded computer 

systems face several daunting challenges 

since these systems typically have to meet a 

range of stringent, and often conflicting, 

design requirements [1]. As many embedded 

systems target mass production and battery-

based devices or devices that cannot use  

 

 

 

 

 

 

 

 

 

 

active cooling, they should be cheap and 

power efficient. Mission- and safety-critical 

embedded computer systems, like those in 

the avionics and space domains, usually also 

demand high levels of dependability, which 

is becoming even more important as the 

levels of system autonomy rise [2].  

 

Moreover, a great deal of these systems 

must, increasingly, support multiple 

applications and standards for which they 

often need to provide real-time performance. 

For example, mobile devices must support a 

variety of different standards for 

communication and coding of digital 

contents. In addition, many of these systems 

also need to provide a high degree of 

flexibility, allowing them to be easily 

updated and extended with future 

applications and standards. This calls for a 

high degree of programmability of these 

systems, whereas performance, power-

consumption and cost constraints require 

implementing substantial parts of these 

systems in dedicated hardware blocks. As a 

result, modern embedded systems often have 

heterogeneous multi-processor system 

architecture. They consist of processors that 

range from fully programmable cores to 

fully dedicated hardware blocks for time-

critical application tasks [3].  

 

To cope with the design complexity of these 

systems, the concept of system-level design 

has been introduced, which raises the 

abstraction level of the design process. 
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Design space exploration (DSE) is a key 

ingredient of system-level design, during 

which a wide range of design choices are 

explored, especially during the early design 

stages. Such early DSE is of paramount 

importance, as early design choices heavily 

influence the success or failure of the final 

product [4].  

 

An important element of system-level DSE 

is the search for an optimal mapping of the 

application workload onto the underlying 

MPSoC platform architecture [5]. Here, the 

mapping involves two aspects: 1) allocation, 

and 2) binding. Allocation selects the 

architectural components for the MPSoC 

platform architecture (i.e., not all platform 

components need to be used). Subsequently, 

the binding specifies which application task 

or application communication is performed 

by which multiprocessor system-on-a-chip 

(MPSoC) component. The number of 

possible mappings is enormous, especially if 

there are multiple applications in the 

workload of the embedded system. During 

the DSE of embedded systems, multiple 

optimization objectives – such as 

performance, power/energy consumption, 

and cost should be considered 

simultaneously [6]. This is called multi-

objective DSE. Since the objectives are 

often in conflict, there cannot be a single 

optimal solution that simultaneously 

optimizes all objectives. Therefore, optimal 

decisions need to be taken in the presence of 

trade-offs between design criteria. 

 

In order to capture the dynamic behavior of 

multiapplication workloads in system-level 

design we have introduced scenario-based 

DSE. An important problem that needs to be 

solved by such scenario-based DSE is the 

rapid evaluation of mappings during the 

search through the MPSoC design space [7]. 

The number of potential interactions 

between different applications grows 

exponentially with the number of 

applications and application modes that can 

be simultaneously executed in the embedded 

system. As a consequence, the potential 

number of different application scenarios 

can be huge. Therefore, it is infeasible to 

rapidly evaluate mappings during the 

process of early DSE by exhaustively 

analyzing (e.g., via simulation) all possible 

workload scenarios. As a solution, fitness 

prediction [8] can be used to quickly obtain 

an approximated fitness value. Scenario-

based DSE rapidly evaluates mappings for 

multiapplication workloads during the 

search through the MPSoC design space. 

For this rapid evaluation, a co-exploration is 

performed of the MPSoC design space and 

the application scenario space. The rest of 

this paper is organized as follows: Section II 

relates the literature survey, Section II 

introduces the Framework for design space 

exploration, Section IV presents the 

experiments in which we compare the 

different fitness prediction techniques and 

finally paper concludes with Section V.  

 

II. LITERATURE SURVEY 

Yong Xie, Gang Zeng, Ryo Kurachi, 

Hiroaki Takada, and Guoqi Xie, et al. [9] 

optimize the data throughput of a Controller 

Area Network bus taking possible attacks on 

the communication into consideration. They 

secure the com by adding message 

authentication codes (MACs) to messages 

vulnerable to manipulation. The additional 

overhead induced by these MACs influences 

the communication delay and system 

performance. The authors consider the 

influence of MACs on the performance 

constraint and describe a method to 

simultaneously optimize the system’s timing 

behavior and secure the communication. 

Pimentel, Andy et. al. [10] As inserted 

systems develop increasingly perplexing and 

as new applications, for example, IoT 

require many design limitations, modern 
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design space exploration techniques are 

fundamental so as to locate the best tradeoff 

between various design objectives and their 

tradeoff. This instructional exercise gives an 

organized knowledge into the field of design 

space exploration for inserted systems. 

 

F. Tu, S. Yin, P. Ouyang, S. Tang, L. Liu, 

and S. Wei, et al. [11] presented a deep 

neural architecture (DNA), which can 

reconfigure its data paths to support 

dataflow techniques for different layer sizes. 

To find the optimal dataflow pattern, they 

simulate the analysis of buffer access and 

DRAM access. This paper performs a 

simulation by applying the roofline model to 

analyze the tendencies and provide an 

intuitive solution for optimal parameters in 

terms of the number of giga-operations per 

second (GOPS) and the computation-to-

communication ratio (CCR). 

 

S. N. Mahalank, K. B. Malagund and R. M. 

Banakar et. al. [12] presents a mind boggling 

Internet of Things framework needs 

systematic methodology in the underlying 

phases of the design to freeze between 

numerous accessible design options. The 

choices are situated at the framework level, 

method of information transmission and 

software module advancement level. The 

decisions influence the few design 2 

objectives demonstrating the choices to 

speak to a multi-criteria issue to pass 

judgment on the nature of the new IoT 

design. A few parts of the design space 

condition are researched to address the 

inquiry that emerge at the system level 

joining stage, specifically the 

correspondence mode devices, software 

modules, design reconciliation issue and 

client administrations are interestingly 

distinguished from this structure. The 

necessary interface units, information move 

mode and software apparatus suite is given 

utilizing the IoT design space exploration 

approach. Clients inclinations dependent on 

the administration prerequisite depicts an 

end target design reaction that can be 

utilized in the arrangement model. Nan 

Feng, Harry Jiannan Wang, and Minqiang 

Li.  et al. [13] propose a technique, which is 

also based on Bayesian networks for 

calculating cyber security risk. In their work, 

the authors describe a security risk 

management tool which takes into account 

historical security incidents as well as 

security expert judgment. Based on these 

inputs they formulate a risk analysis method. 

The authors do not consider techniques to 

mitigate security vulnerabilities, or decrease 

the security risk. 

 

Kazmierski, Tom & Wang, Leran & Merrett, 

Geoff & Al-Hashimi, Bashir & Aloufi, 

Mansour, et. al. [14] presents Fast Design 

Space Exploration of Vibration-Based 

Energy Harvesting Wireless Sensors. To 

research the different exchange offs among 

these parameters, it is alluring to investigate 

the multi-dimensional design space rapidly. 

This paper presents a response surface 

model (RSM) based technique for quick 

design space exploration of a total remote 

sensor hub fueled by a tunable vitality 

collector A few test situations are 

considered, which represent how the 

proposed approach allows the designer to 

alter a wide scope of system parameters and 

assess the impact immediately yet with high 

exactness. In the created toolbox, the 

assessed CPU time of one RSM estimation 

is 25 μs and the normal RSM estimation 

mistake is not exactly 16.5%. 

 

Buchli, Bernhard & Yücel, Mustafa & Lim, 

Roman & Gsell, Tonio & Beutel, Jan, et. al. 

[15] remote Sensor Network applications 

require trustworthy stages that convey right 

and solid activity over extensive stretches. In 

any case, application portrayal and accurate 

system prerequisites speciation can be 
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muddled because of obscure natural 

elements and system restrictions. Right now 

we present another way to deal with design 

space exploration utilizing a component rich 

system for encouraged experimentation. We 

contend that outcomes acquired from 

experimentation with this stage permit fast 

speciation of advanced sensor systems at 

decreased expense. 

 

III. DESIGN SPACE EXPLORATION USING FITNESS PREDICTION TECHNIQUES 

A methodology Framework for design space exploration using Fitness Prediction Techniques is 

represented in below Fig. 1. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1: WORKFLOW OF THE DESIGN SPACE EXPLORATION 

 

The objective of the exploration framework 

is to provide a static mapping of the multi-

application workload onto the MPSoC. This 

static mapping is used throughout the 

system’s entire lifetime. Therefore, the 

average behavior of the system for all 

different possible application workload 

scenarios must be as good as possible. There 

are several significant tasks in the design 

space exploration process, which our 

methodology is going to solve. First, a 

designer should create an adequate model of 

the system using an appropriate tool. 

Second, a formal specification of 

requirements should be done, perhaps in 

parallel with model construction. Finally, 

he/she needs to run simulations and analyze 

the provided traces to check whether the 

requirements are met or not. 

 

The scenario-based DSE explores the 

mapping of multiapplication workloads onto 

an MPSoC platform. To this end, a couple of 

inputs need to be made explicit. Not only the 

architectural model needs to be given, but 

also the multiapplication workload. The 

architectural model describes the complete 

set of available architectural components 

(including the available interconnections). 

This architecture typically will not fit on the 
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final MPSoC. Therefore, the DSE will 

reduce this architecture by only using a 

subset of the architectural resources. 

 

From the multi-application workload two 

characteristics are required. First, model 

describes the structure of the applications. 

Secondly, the possible workload behavior is 

described explicitly using a scenario 

database in which the inter- and intra-

application scenarios are stored and made 

explicit. Whereas the input application 

models specify the structure of each 

individual (concurrent) application enabling 

mapping exploration of the application 

tasks, the scenario database characterizes the 

different possibilities for multiapplication 

workload behavior (e.g., which applications 

or application modes are active at the same 

time).  

 

A representative subset of application 

scenarios from the scenario database is used 

to rapidly evaluate mappings during MPSoC 

DSE. As the quality of the fitness prediction 

of a subset is dependent on the mappings 

that are under evaluation, we have already 

pointed out that the MPSoC design space 

needs to be simultaneously co-explored with 

the application scenario space. The subset 

selector, tries to identify the best 

representative subset of application 

scenarios that is used to evaluate the 

mappings in the design explorer. The subset 

selector can be implemented with multiple 

techniques. 

 

The subset selector is responsible for 

obtaining a representative subset of 

scenarios   ̃ to predict the fitness of 

mappings in the design explorer. Due to the 

potentially large number of scenarios, this 

selection is not trivial. Ideally, this selection 

is done statically, before the MPSoC DSE 

process starts. Therefore, the subset 

selection needs to be performed dynamically 

using a training set    of application 

mappings m. The training set    is 

dynamically updated during the complete 

process of scenario-based DSE. 

 

There is a difference between the real fitness 

F and the estimated fitness    ̃
̃  . The real 

fitness uses all possible scenarios to 

determine the objectives. Therefore, this 

fitness is independent of the current 

generation. The estimated fitness    ̃
̃ , 

however, is only valid during generation j as 

in the next generation the most 

representative scenario subset     ̃, which is 

used to estimate the fitness may be changed. 

 

Before the design explorer can perform any 

evaluation, the currently representative 

scenario subset   ̃ must be retrieved. Using 

the obtained subset of application scenarios 

  ̃, the design explorer can quickly evaluate 

the fitness    ̃
̃  for all mappings in the current 

population. As a result, mapping individuals 

in the parent population may need to be 

partially reevaluated. Afterwards, the current 

population is exported to the subset selector. 

Next, the GA (Genetic Algorithm) can select 

individuals based on their estimated fitness 

   ̃
̃ . Similar to the design explorer, a GA is 

used to identify the best representative 

subset. A pool of individual subsets follows 

an evolutionary process with crossover and 

mutation to obtain a subset of scenarios that 

is as good as possible 

 

Model checking is a process of automated 

verification of models against the 

requirements, which are expressed in some 

formal language. It examines all possible 

system scenarios in a systematic manner. 

Temporal Boolean logic is typically used for 

requirements specification, though a 

combination of theories is also possible, for 

example, difference logic and linear 



 

12434 
 

arithmetic over rationals. For theory 

combinations, Satisfiability Modulo 

Theories (SMT) solvers are used. As output, 

model checking tools provide information 

whether requirement formulas are satisfied 

or not. In the latter case, many checkers are 

able to return a counterexample, which is 

very useful for debugging and analysis. 

 

A suitable tool for our purposes should 

either meet these criteria or provide 

convenient extension possibilities for 

integrating these components. Another 

important method used in many design 

routines is called verification. It aims to 

ensure the correctness of the model as well 

as of simulation results. In particular, 

automated model verification techniques are 

used for checking simulation traces and also 

the model itself against the requirements. 

 

The outcome of the DSE is a final set of 

candidate mappings. This set of mappings is 

taken from the trainer within the subset 

selector. Most importantly, the real fitness of 

these mappings is known. Additionally, the 

selection procedure of the trainer ensures 

that the nondominated solutions that are 

encountered will be kept in the list during 

the complete design space exploration. 

 

IV. RESULT ANALYSIS 

In order to verify the scenario-based DSE, a 

couple of experiments have been performed. 

For these experiments, both the multi-

application workload and the potential set of 

architectural components remain fixed. The 

multi-application workload is generated 

stochastically with a Python tool based on in 

such a way that the behavior of ten 

embedded applications is resembled. The ten 

applications have a total of 58 processes and 

75 communication channels. The 

multiapplication workload consists of 4607 

different application scenarios. We have 

chosen to use stochastic applications as they 

provide a wider range of possibilities than 

real applications do. They can easily be 

instrumented to mimic real applications, but 

they also allow for small changes on 

parameters, such as communication fraction, 

for a thorough study of the properties of the 

DSE process. The effect of the subset size 

on the quality of the identified mapping is 

analyzed. Therefore, we performed a DSE of 

8 hours with the hybrid approach to select a 

scenario subset. During this DSE, two 

threads were assigned to the subset selector 

and six threads were assigned to the design 

explorer.  

 

1) Accuracy: The larger the subset, the more 

accurate the fitness prediction in the design 

explorer is. As a result, it can make better 

decisions about which individuals must be 

chosen for the next generation. In general, 

larger subsets are more likely to be able to 

identify the fast mapping within a certain 

time.  

 

2) Overhead: The larger the subset, the 

longer it takes to obtain the fitness of a 

single mapping. A longer evaluation time of 

a single mapping not only means that less 

individuals can be evaluated in a certain 

time frame, but also that the GA performs 

less generations. As a consequence, the 

search has less benefit from the evolutionary 

process and it becomes harder to identify 

good mappings within a certain time frame. 

 

In the experiment, four different subset sizes 

are used: 0.1%, 1%, 4%, and 16% of the 

total number of application scenarios. For 

each individual subset size, the result is 

averaged over nine DSE runs to take into 

account the stochastic nature of the GA in 

the design explorer. Fig. 2 and Fig. 3 shows 

the results of the experiments.  

 

After a short period (5 min), the evaluation 

overhead is the most significant effect when 
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looking at the different subset sizes. For the 

1%, 4%, and 16% subsets, the minimal 

execution time is larger as the size of the 

used scenario subset increases. In case of the 

0.1% subset, this deviation barely decreases 

over time. This shows that the DSE is far 

from accurate. For the other subsets, the 

prediction is accurate enough to result in a 

very small deviation at the end of 8 h of 

DSE. 
 

 
Fig. 2: EFFECT OF THE SUBSET SIZE ON 

QUALITY PERCEIVED RESULT OF DSE 

 

The overhead effect is not visible any more 

once the GA is converged. Fig. 3 shows the 

convergence time (within 1% of final result). 

In general, a larger subset means a larger 

convergence time. An exception is the 0.1% 

subset. The 0.1% subset is not able to 

provide good mappings as the fitness 

prediction is not accurate enough. The 

increased convergence time of the design 

explorer is also seen in the minimal 

execution time in Fig. 2. In the first hour, the 

minimal execution time of the 4% subset 

larger than the 1% subset. The same holds 

for the 16% subset. Provided that the subset 

is accurate enough, the smaller the subset is, 

the earlier it gets close to the optimal 

execution time.  

 

 
Fig. 3: EFFECT OF THE SUBSET SIZE ON 

OVERHEAD EFFECT 

Therefore, we can speak of an accuracy 

threshold. Once the accuracy of the subset is 

above the accuracy threshold, the final GA 

results are not significantly affected by the 

subset size. However, due to the overhead 

effect, the convergence time will increase 

with a larger subset. 
Our final experiment shows a comparison 

between the different subset selection 

methods and its effect on the efficiency of 

the DSE. Therefore, the required exploration 

time for the scenario-based DSE to identify 

a satisfying mapping is measured. After all, 

the faster the DSE can provide results that 

match the requirement of the user, the better 

it is. For this purpose, a DSE of 100 min is 

performed with all the subset selector 

approaches. Each experiment is performed 

for three different subset sizes (1%, 4%, and 

8%). The results are averaged over nine 

runs. 

 
Fig. 4: QUALITY OF DSE FOR DIFFERENT 

SUBSET SELECTION APPROACHES 
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We observed that when increasing the subset 

two effects will occur: 1) higher accuracy, 

and 2) slower convergence. The FS subset 

selection has worse results when the subset 

becomes larger (the smaller the distance, the 

better). The GA however, shows a 

somewhat different effect. With 4% it is able 

to benefit from a subset with a higher 

accuracy. The slower convergence starts to 

affect the efficiency from the 8% subset. 

Comparing the different methods, the GA 

method has the best results. The only 

exception is for the 1% subset. In this case 

the feature selection is still able to search the 

smaller design space of possible subsets. 

 

V. CONCLUSION 

In this paper, methodology Framework for 

design space exploration using Fitness 

Prediction Techniques is described. 

Scenario-based DSE provided an efficient 

early design space exploration of dynamic 

multiapplication workloads by co-exploring 

the design space of multi-application 

mappings onto an MPSoC with the design 

space of representative scenario subsets. 

Fitness prediction is used to obtain the 

quality of a mapping. This fitness prediction 

is performed using a representative subset of 

application scenarios that is obtained using 

co-exploration of the scenario subset space. 

The experiments in this paper showed that 

during the DSE there were two effects: 1) 

the overhead effect, and 2) the accuracy 

effect. A larger scenario subset results in a 

more expensive mapping evaluation. As a 

result, the DSE required more effort to 

identify the Pareto front. Additionally, a 

large subset also meant a higher accuracy. 

The higher accuracy resulted in a better 

prediction that made the genetic search to 

the Pareto front more efficient. The GA 

however, shows a somewhat different effect. 

With 4% it is able to benefit from a subset 

with a higher accuracy. The slower 

convergence starts to affect the efficiency 

from the 8% subset. Comparing the different 

methods, the GA method has the best 

results. 
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