
JOURNAL OF CRITICAL REVIEWS
ISSN- 2394-5125 VOL 7, ISSUE 19, 2020

11082

Study and Analysis into the Use of History-Based Dynamic

Validation Studies for Demand Properties in Regression Testing

 Appari pavan kalyan1, Dr.Harsh Lohiya2

1Research Scholar, Dept. of Computer Science and Engineering, Sri Satya Sai

University of Technology and Medical Sciences, Sehore Bhopal-Indore Road, Madhya

Pradesh, India.
2Research Guide, Dept. of Computer Science and Engineering, Sri Satya Sai

University of Technology and Medical Sciences, Sehore Bhopal-Indore Road, Madhya

Pradesh, India.

Abstract

Regression testing is critical, but it is also expensive and time-consuming to do. It's

important to prioritise test cases in order to speed up the testing process because there

are only so many resources. Conventional approaches to deciding which test cases

should be prioritised emphasise one-time testing and ignore the enormous quantities

of historical data that regression testing provides. Using historical data to rank test

cases is proposed as part of this work. History-based testing prioritises test cases based

on requirements, and the historical data is used to decide the test case priorities in

regression testing after the test cases have been established. A real-world application

will be used to evaluate the efficacy of our methodology. This will be an empirical

study. According to our tests, the technique we've presented using average fault

detection rates and fault detection rate improves overall performance in real-world

settings.

INTRODUCTION

When making changes to a piece of software, programmers often want to make sure

that any code that hasn't been changed hasn't been hurt in any way. If the original code

is changed in any way, this is called a regression error. Software developers often use

regression testing to look for certain types of regression problems. The easiest way to

do regression testing is to run all of the previous tests again. Even though this strategy

is easy to put into place, it may be too expensive if it only affects a small part of the

system. A different method, called regression test selection, has been proposed

(RTS)[1]. Using this method, you can only run a subset of the tests again. Because it's

hard to choose the best set of test cases, regression testing research and practise focus

JOURNAL OF CRITICAL REVIEWS
ISSN- 2394-5125 VOL 7, ISSUE 19, 2020

11083

on the tradeoffs between cost and utility of RTS techniques (i.e., those that will

expose the most faults). But we don't know very much about how these methods

work. When studying this topic, researchers often use base and modified versions of a

system and the test suites that go with them. Then, they use algorithms to choose tests

and compare the size and effectiveness of the tests chosen to those of the original

tests. There are two big problems with this method: Regression testing is seen as a

one-time event instead of a continuous process, so real-world limitations on time and

resources are not taken into account. Regression testing is better described as an

ordered series of testing sessions, each of which has limited time and resources and

whose performance may depend on how well earlier testing sessions worked. Based

on these facts, it seems reasonable to make two guesses. One of them is that the

perfect regression tester should be able to do a lot more than the real one can. Our

recent research shows that the number of changes made between testing sessions has a

big effect on how well different RTS approaches work. When more than two or three

changes were made to the subject programmes, one method, called a "safe technique"

[2], was often used to choose almost all test cases. So, if this happens in real life, RTS

techniques can't be used as they were meant to be (such as when a system is being

heavily modified). Instead, the RTS-selected test cases must be cut down even more

so that they can be run with the restrictions given. This process is called "test case

prioritisation." But there is a second way that past test case performance data could be

used to improve the long-term performance of regression testing. At the moment,

there is no way to remember how RTS or prioritising turned out. Only information

from the current and previous software versions' source code and test case profiling

can be used to make these reports. This seems to think that local knowledge can

guarantee long-term performance. On the other hand, setting priorities cancels out the

guarantees of RTS, making the results of regression testing hard to predict. So, if test

case prioritisation is needed, we need to think about how new methods that don't just

rely on local knowledge might be helpful.... In this post, we'll start to find out more

about these ideas. We care a lot about how well different RTS strategies work when

time and resources are very limited. The heuristic we describe and test is a simple one

that sorts test cases by how important they are based on data from the past. Our

hypothesis is that using these heuristics could make regression testing faster and

cheaper in situations where development time is limited. If this hypothesis is true,

integration and regression testers could save time and money by better managing and

coordinating their testing tasks. So, to see how well this idea works, we made and ran

an experiment. In the rest of this publication, we talk about our experiment's design,

JOURNAL OF CRITICAL REVIEWS
ISSN- 2394-5125 VOL 7, ISSUE 19, 2020

11084

analysis, and results, as well as possible areas for future research. This comes after our

review of the literature.

RELATED WORK

It is imperative that software systems are retested whenever a new platform or

environment is introduced to ensure that their quality is not compromised. It has been

updated, thus some of the test cases have become obsolete and others are more

significant now than they were before. Using regression testing, this issue can be

resolved.X. Wang et al[3] In this line of research, a proposal is made to rank the

importance of test cases according to historical data. Testing is extremely dependent

on requirements; in our history-based method, test case priorities are initially set based

on the priorities of the requirements, and during regression testing, these priorities are

then dynamically determined based on historical data.

Khatibsyarbini, et al[4] It is possible to make certain that a programme is of excellent

quality by putting it through a software testing process. Software testing, on the other

hand, is a time-consuming and hence expensive phase in the development process. It

is possible to increase software testing efficiency by prioritising the execution order of

test cases, especially during regression testing.

Khatibsyarbini, et al[5] The process of testing software allows for the possibility of

providing a quality assurance for the product. On the other hand, the period of testing

software requires a significant investment of time and money. Performance during

software testing can be improved, particularly during regression testing, by prioritising

the scheduling of the execution order of test cases. This can be done using a

prioritisation technique.

Md. Abdur Rahman et al[6] Regression problems can be found early via test case

prioritisation. When a new version is released, both the old and new test cases are run

for regression testing. This expensive method adds test cases to regression testing.

Test cases must be changed to find the most defects in the quickest time. Most

prioritisation strategies use source code coverage, needs grouping, etc. These

strategies rely on test case similarities. Similarity-focused approaches can get stuck in

a local minimum. This research provides a dissimilar clustering-based approach that

uses historical data analysis to identify problematic items. It's usual to execute

different test cases before related ones.

JOURNAL OF CRITICAL REVIEWS
ISSN- 2394-5125 VOL 7, ISSUE 19, 2020

11085

PROPOSED METHODOLOGY

A strategy for testing needs to be developed according to a set of parameters that have

already been decided upon. The first thing that has to be done is to set up a database

that will hold all of the code modules and test cases for the project. The definitions of

these modules take into account not only the alterations that occur within a module but

also the module's connections to the other modules. Because of this examination of

module interaction, the selection of a test case for regression testing must adhere to

certain parameters[7]. The next thing that needs to be done is, depending on the test

cases that were defined, figure out how crucial the module is. The criticality will be

determined after taking into account the amount of defects as well as the particular

kinds of flaws. Together, these two parameters will be used to determine the relative

cost of the development of test cases. The importance of the test and the significance

of its code would determine how high it would be on the priority list. In the end, a

method known as dynamic programming will be applied in order to generate the test

sequence. For the purpose of determining the appropriate sequence, testing will

consume the smallest possible sum of money. The quality of any project should be

maintained[8] or improved as it is the single most critical thing that can be done to

ensure a project's success. It is important that something be completed within the

allotted amount of time and money. Testing the software is the phase that consumes

the most time and results in the most financial investment. Even if there isn't enough

time or money, it has to be done repeatedly after it has already been done. Testing the

system is the final stage that must be completed before a software product can be

handed over to a customer. In order to determine whether or not the software satisfies

the criteria of the customer, testing is performed on the finished, integrated, and

operational product. Therefore, this is the final opportunity to test whether or not the

system[9] that was built functions in the manner that the customer desired. Testing a

full integrated system, which consists of hardware, an operating system, and features

that need to be coordinated with one another, takes time and costs money. This is

because testing an integrated system involves all of these components. The greater the

number of components or settings involved in this procedure, the more complicated it

will become. When modifications are made to the software system, those

modifications should not have an effect on the code that has not been modified. When

something fails to work as it should, this is referred to as a "regression error." Finding

and correcting faults that were introduced as a result of previously implemented

changes is referred to as "regression testing." In order to test for regression in the most

JOURNAL OF CRITICAL REVIEWS
ISSN- 2394-5125 VOL 7, ISSUE 19, 2020

11086

natural way possible, you should run all of the existing test cases once more. This is

both expensive and unnecessary, particularly considering that only a small portion of

the software has been modified. The number of test cases (TCs) that are necessary[10]

to cover all of the configuration options for a piece of software could be anywhere

from hundreds to millions. It is impossible to conduct tests on all of these different

TCs since doing so would take too much time and cost too much money. Software

firms were concerned about the lack of time and resources, which made it difficult to

do system testing effectively and maintain a high level of quality and reliability in

their products. This caused the companies to worry. As a result of this, there needs to

be a method that maintains the quality of the product while also reducing the cost of

testing. In order to cut costs associated with testing, various strategies such as test case

selection, test case minimization, and test case prioritisation (TCP) were developed.

Test case selection methodology is a method that reduces the expenses associated with

testing by selecting a few good subsets of test cases from the test suite based on

information regarding the programme, changes performed, and the test suite [11]. The

reduction of a test suite to a more manageable size while maintaining the same level

of coverage as the full test suite is the goal of test suite minimization, which results in

cost savings associated with testing. But there are a few issues with both of these

approaches. For instance, some empirical evidence demonstrates that test suite

minimization has the same rate of detecting flaws as the original test suite, whilst

other empirical information demonstrates that test suite minimization makes it more

difficult to find bugs than the original test suite did. Test case selection strategies have

the same problem. There are methods for selecting test cases that are both effective

and secure, and these methods can detect defects just as effectively as the original test

suite. However, this approach is not applicable to all types of software. Because these

two methods of decreasing costs get rid of their TCs, it is possible that certain TCs

will not have their potentially serious problems discovered. Because of this, the

overall quality of the programme that is developed suffers. The TCP approach sorts

the TCs in descending[12] order of priority, with the ones having the highest priority

in terms of their PGs being executed first, followed by the ones having the lowest

priority. The challenges associated with test case selection and minimization are

circumvented by TCP's refusal to dispose of test cases (TCs). In addition, if the testing

procedure had been terminated earlier, the time that was spent testing would have

been time well spent because the test cases that had successfully fulfilled their PGs

would have been run first, followed by the test cases that had a lesser priority. The

TCP approach can be utilised for both testing at the beginning of the process as well

as regression testing.

JOURNAL OF CRITICAL REVIEWS
ISSN- 2394-5125 VOL 7, ISSUE 19, 2020

11087

History-based Approach

A matrix analysis is used to establish relationship clusters between software artefacts,

and singular value decomposition is a technique for prioritisation that is based on

these clusters. In order to decide which test cases should be prioritised, it is necessary

to take into consideration three different factors: association clusters, a modification

vector, and the connection that exists between the test cases and the files. A change

matrix is utilised in the application of the SVD technique that is used to generate

association clusters[13]. When two files are regularly modified together to correct a

fault, a phenomenon known as association clustering might arise. Additionally, the file

is connected to tests that either have an effect on it or are carried out by it. A recent

change to the system is now reflected by a vector, and within that vector, each value

indicates whether or not a particular file has been modified by indicating whether or

not it has been changed. This was done for the sake of thoroughness. As a

consequence of this, a priority can be assigned to each file based on how closely the

newly introduced change matches each test case, and this is made possible by the

association clusters and the modification vector. To accomplish this objective, you can

consider use the modification vector in conjunction with the association clusters. The

concept that any software artefact[14] can be taken into consideration for priority is

one of the innovative aspects that distinguish this method from others. According to

Sherriff and his colleagues, faults in non-source files, such as those found in media or

documentation, can be just as detrimental as those found in source code. Source code

errors are the most common type of file defect.

Coverage-based Techniques

This measurement is referred to more frequently by its colloquial moniker, "test

coverage analysis," than by its more accurate name, "code coverage analysis," among

software testing professionals. This metric is what puts the code of a programme

through its paces while the testing part of the validation is being performed, and it

measures that. In the context of software testing, the absence of any third-party

applications or resources is referred to as "white boxing." The following is a list of

tools and methods that have been mentioned in the coverage: checking to see if the

application has been tried out on a particular set of test scenarios and finding that it

hasn't creating extra test cases with the goal of expanding the scope of the

investigation (d) The process of deriving a quantitative metric of code coverage by

locating test cases that are redundant and do not contribute to increased coverage,

which is an indirect sign of quality; The term "white-box testing" refers to testing

JOURNAL OF CRITICAL REVIEWS
ISSN- 2394-5125 VOL 7, ISSUE 19, 2020

11088

methodologies that place an emphasis on the underlying structural components. A

comparison is made between the behaviour of the test programme and the apparent

intent of the source code using structural testing. Functional testing, which is

sometimes known as "black-box" testing, is concerned with comparing the behaviour

of a test programme to a set of criteria. Functional testing is also often called as

"white-box" testing. In the course of its analysis, it takes into consideration any

structural or logical problems that may exist within the software. During functional

testing, the only thing that matters is what a piece of software is capable of achieving,

not how it operates in the background. The "coverage based methodology" group is

responsible for assigning priority to test cases based on criteria such as requirement

coverage, total requirement coverage, additional requirement coverage, and statement

coverage.

Cost effective-based techniques

consist of techniques for prioritizing[15] test cases according to expenses, such as the

cost of analysis and the cost of prioritisation. This subject has been investigated by a

great number of researchers. Existing strategies for cost-effective and based test case

prioritising will be discussed in the following paragraphs. The amount of resources

needed to execute and validate a test case is directly proportional to the case's

associated cost. In addition to this, cost-cognizant prioritising calls for an evaluation

of the gravity of each flaw that a test case is able to uncover. The total function

coverage prioritisation (fn-total), the additional function coverage prioritisation (fn-

addtl), the total function difference-based prioritisation (fn-diff-total), and the

additional function difference-based prioritisation are the four practical code

coverage-based heuristic techniques (fn-diff-addtl). models of costs for prioritisation

that take into account these various costs. In order to prioritise test cases, they

developed the following variables: cost of analysis (abbreviated as Ca(T)), and cost of

the prioritising algorithm (abbreviated as Cp) (T). WP equals Ca(T) plus Cp (T) WP is

a weight prioritisation value that is assigned to each test case. • The cost of an

examination of the source code, an analysis of the differences between the old and

new versions, and the collecting of execution traces are all included in Ca(T). • Cp(T)

is the real cost of operating a prioritisation tool, and depending on the prioritisation

algorithm that is being used, this cost can be calculated during either the preliminary

phase or the critical phase.

This paper presents a case study of the implementation of history-based regression

testing in a big software development organisation. The goal of this work is to

JOURNAL OF CRITICAL REVIEWS
ISSN- 2394-5125 VOL 7, ISSUE 19, 2020

11089

increase test efficiency and transparency at the function level. An automated tool has

been developed as a direct result of the findings of this study. This tool combines the

concepts of historical regression[16] analysing principles from literature with best

practises from the current process and the opinions of practitioners. The currently

implemented experience-based strategy, along with two systematic approaches, are

subjected to a post hoc quasi-experiment in order to facilitate comparison. In order to

further evaluate the tool's performance, practitioners do manual assessments of the

output it generates. The purpose of using history-based prioritisation is to improve the

effectiveness of a test suite by taking into consideration the characteristics of earlier

iterations of test case executions. Practitioners first identified historical efficacy [17]

and execution history as essential components to include in a tool. Our strategy was

put into practise and then assessed, but the practitioners stopped using the execution

history as a basis for prioritisation. The non-historical aspects that are being stressed

are working toward achieving confidence rather than efficiency. A history-based

strategy to prioritising test cases was demonstrated to be beneficial, but it did not

account for all of the essential characteristics that needed to be considered. The test

management system is intuitive to operate and stores all of the relevant historical data

within its database. We provide the findings of a case study that was conducted on the

implementation of history-based regression testing in a big software development

company with the intention of improving test transparency and efficiency at the level

of function tests [18]. A semi-automated tool is being built based on a combination of

historical conceptions from the literature regarding regression testing, good practises

from the procedure that is currently being used, and practitioner opinions. In this

experiment, a comparison is made between the currently used experience-based

strategy, two systematic approaches, and a post hoc quasi experiment. Practitioners

undertake their own in-depth reviews of the output of the instrument, in addition to the

automated evaluations that are performed. The purpose of using history-based

prioritisation is to improve the effectiveness of a test suite by taking into consideration

the characteristics of earlier iterations of test case executions. The practitioners came

to the conclusion that it is essential for a tool to possess the following characteristics:

historical effectiveness and execution history. After the implementation and

evaluation of our tool[19], practitioners no longer used execution history as a basis for

prioritisation. The non-historical aspects that are being stressed are working toward

achieving confidence rather than efficiency. Even though it did not take into

consideration all of the important parameters, the history-based method [20] for

prioritising test cases was found to be effective in achieving the desired results. The

JOURNAL OF CRITICAL REVIEWS
ISSN- 2394-5125 VOL 7, ISSUE 19, 2020

11090

test management system is intuitive to operate and stores all of the relevant historical

data within its database.

DISCUSSION

 For the objective of increasing test efficiency and transparency, we conducted a case

study on the implementation of history-based regression testing within a large

software development organisation. As a result of the investigation into current

practises, a semi-automated tool has been developed, which incorporates ideas from

the literature about history-based regression testing with best practises discovered

during the current process and the opinions of practitioners. Post hoc quasi

experiments are used to investigate three distinct strategies: the existing strategy,

which is based on experience; two systematic procedures; and the way now employed.

Practitioners do manual evaluations of the instrument's results in order to verify their

accuracy. The features of previous runs of particular test cases are taken into

consideration by history-based prioritisation in order to increase the overall

effectiveness of a test suite's testing. Practitioners initially identified historical efficacy

and execution history as two such qualities that must be integrated into a tool.

Execution history was no longer used as a basis for prioritisation following the

implementation and evaluation of our solution by practitioners. The non-historical

traits that were discovered are intended to increase trust rather than to improve the

efficiency of the testing procedure. Even though [21] had created a history-based

technique for prioritising test cases, it was deemed to be a valid basis for prioritising

test cases. Easy-to-use test management software provides access to previous data

necessary for analysis.

In light of the two predetermined research areas, we have arrived at the following

conclusion:

RQ1. How do you determine which test cases to prioritise and pick for regression

testing? Prioritizing and selecting regression test cases is determined by a number of

criteria, including the following: The session's Scope and Focus, in addition to the

session's Time and Resource Constraints, serve as the basis for selecting test cases that

are historically effective, have a long history of execution, and have a high static

priority. This selection process also takes into account the session's Time and

Resource Constraints. Test cases are prioritised according to the function areas that

they are a part of as a part of the effort to cover as many functionalities as is humanly

practical. The present status (such as blocked or postponed) of a test case is used to

JOURNAL OF CRITICAL REVIEWS
ISSN- 2394-5125 VOL 7, ISSUE 19, 2020

11091

filter out invalid test cases, while the status of test cases from previous sessions is

used to determine the current priority of test cases.

RQ2. Does picking test cases and putting them in order of importance based on the

project's history make regression testing better? By automating as much of the

selection process as possible, we can make it more open and clear. This kind of

automation should combine things that are specific to the situation with good ideas

that are well-known in the research literature. But the details of the proposed methods

are less important because they will have to be changed to fit the current process, the

tools available, and the way people act. It's not possible to include every part of the

selection process in a tool, so there also need to be rules about how to use the tool.

This is because you can't put every part of the selection process into a single tool. It's

possible that the tool will help some regression test sessions more than others (e.g. if

for example the focus is on problem areas). Even if there is a tool, the chosen test

suites still need to be looked at by hand to find any gaps in coverage and get familiar

with any important test scenarios. In the quantitative analysis we did, we found that

putting a history-based priority on a test suite that had already been chosen made it

easier to find flaws early on. This is helpful in case a test session was cut short before

it was done. Much more important is how well a method of choosing is based on

putting things in order of importance. Our data doesn't give us enough information to

say for sure, but it looks like the efficiency of finding faults is getting better, and in

the worst case, it's getting a little worse. This is because we don't have enough

information to make a precise assessment. The history-based method was improved by

adding parts that took into account the age of test cases and their static priority, two

more factors for which data was available in the test management system. The history

of test cases and static prioritisation were the two extra things. Because of these

changes, the testers had more faith in the test suites. However, the extensions had no

effect on how well the prioritising or selection processes worked. In a nutshell, testers

liked the big ideas of history-based prioritisation and putting best practises into a tool,

but they didn't like the details of this particular implementation. Many of the problems

that have come up can be fixed by making changes to how the implementation is

done. If there was a link to the error reporting system, at least some of the most

important things that haven't been done yet could be done. On the other hand, some

problems with the tool can't be easily fixed because the test management database

may have information that is out of date or doesn't exist.

CONCLUSION

JOURNAL OF CRITICAL REVIEWS
ISSN- 2394-5125 VOL 7, ISSUE 19, 2020

11092

This study looks at test case prioritisation and other strategies for regression testing. In

this study, we will talk about how to prioritise test cases and what important

contributions they have made. Prioritization strategies are also argued over in terms of

how they should be put into groups. Three of the most common ways to set priorities

are based on the type of code coverage data, how feedback is used, and how code has

changed. Some of the most common ways to order tasks are by coverage, fault, code

change, code analysis, tester input, and programme data. There are also greedy, cost-

aware, and history-based approaches. In these methods, coverage and finding flaws

are often done at the same time. Since finding bugs is the main proxy for all

prioritisation strategies, the focus moves from code analysis to prioritisation based on

history. It is clear that the industry prefers to use artificial prioritisation techniques

over coverage-based ones, and research in this area shows that coverage-based

techniques produce less positive results than artificial ones, especially when it comes

to smaller-scale programmes and artificial seeds for them. On a larger scale, more

research is needed to compare both artificial and coverage-based methods so that the

differences between them can be seen more clearly. We've seen that some artificial

procedures lose their effectiveness when the size of the programme goes over a certain

threshold, and that the effectiveness goes down as the size of the programme goes up.

REFERENCE

[1]. Li, K., Wu, G. Randomized approximate class-specific kernel spectral

regression analysis for large-scale face verification. Mach Learn 111, 2037–

2091 (2022). https://doi.org/10.1007/s10994-022-06140-9

[2]. Abolghasemi, M., Hyndman, R.J., Spiliotis, E. et al. Model selection in

reconciling hierarchical time series. Mach Learn 111, 739–789 (2022).

https://doi.org/10.1007/s10994-021-06126-z

[3]. X. Wang and H. Zeng, "History-Based Dynamic Test Case Prioritization for

Requirement Properties in Regression Testing," 2016 IEEE/ACM International

Workshop on Continuous Software Evolution and Delivery (CSED), 2016, pp.

41-47, doi: 10.1145/2896941.2896949.

[4]. Khatibsyarbini, Muhammad; Isa, Mohd Adham; Jawawi, Dayang N.A.;

Tumeng, Rooster (2017). Test case prioritization approaches in regression

testing: A systematic literature review. Information and Software Technology,

(), S0950584916304888–. doi:10.1016/j.infsof.2017.08.014

JOURNAL OF CRITICAL REVIEWS
ISSN- 2394-5125 VOL 7, ISSUE 19, 2020

11093

[5]. Khatibsyarbini, Muhammad, et al. “Test Case Prioritization Approaches in

Regression Testing: A Systematic Literature Review.” Information and

Software Technology, vol. 93, Jan. 2018, pp. 74–93,

10.1016/j.infsof.2017.08.014.

[6]. Md. Abdur Rahman, Md. Abu Hasan and Md. Saeed Siddik. Prioritizing

Dissimilar Test Cases in Regression Testing using Historical Failure Data.

International Journal of Computer Applications 180(14):1-8, January 2018.

[7]. X. Zhao, Z. Wang, X. Fan, and Z. Wang, “A clusteringbayesian network based

approach for test case prioritization,” in Computer Software and Applications

Conference (COMPSAC), 2015 IEEE 39th Annual, vol. 3, pp. 542–547, IEEE,

2015.

[8]. L. W. Yee, N. A. A. Bakar, N. H. Hassan, N. M. M. Zainuddin, R. C. M.

Yusoff and N. Z. A. Rahim, "Using Machine Learning to Forecast Residential

Property Prices in Overcoming the Property Overhang Issue," 2021 IEEE

International Conference on Artificial Intelligence in Engineering and

Technology (IICAIET), 2021, pp. 1-6, doi:

10.1109/IICAIET51634.2021.9573830.

[9]. C. Guici and L. Yiyun, "The empirical analysis on demand of property

insurance in Hubei Province based on panel data," 2017 29th Chinese Control

And Decision Conference (CCDC), 2017, pp. 6378-6383, doi:

10.1109/CCDC.2017.7978319.

[10]. M. Bai and R. Zhao, "The Test and Calculation of the Underwriting Cycle in

Property-Liability Insurance of China," 2007 International Conference on

Computational Intelligence and Security Workshops (CISW 2007), 2007, pp.

600-603, doi: 10.1109/CISW.2007.4425567.

[11]. F. S. Ismail, Noor Elaiza Abd Khalid, N. A. Bakar and R. Mamat, "Optimizing

oil palm fiberboard properties using neural network," 2011 3rd Conference on

Data Mining and Optimization (DMO), 2011, pp. 271-275, doi:

10.1109/DMO.2011.5976540.

[12]. G. Chen and L. Ge, "Comparison of Forecasting Methods for Aspect Ratio of

Wood Tracheid," 2010 2nd International Workshop on Database Technology

and Applications, 2010, pp. 1-4, doi: 10.1109/DBTA.2010.5658959.

[13]. “A Dissimilarity with Dice-Jaro-Winkler Test Case Prioritization Approach for

Model-Based Testing in Software Product Line.” KSII Transactions on Internet

and Information Systems, vol. 15, no. 3, 31 Mar. 2021,

10.3837/tiis.2021.03.007. Accessed 26 Mar. 2022.

JOURNAL OF CRITICAL REVIEWS
ISSN- 2394-5125 VOL 7, ISSUE 19, 2020

11094

[14]. G. Chen and L. Ge, "Comparison of Forecasting Methods for Aspect Ratio of

Wood Tracheid," 2010 2nd International Workshop on Database Technology

and Applications, 2010, pp. 1-4, doi: 10.1109/DBTA.2010.5658959.

[15]. Jianxin Zhou, Yinxin Ji, Zongliang Qiao, Fengqi Si and Zhigao Xu, "Nitrogen

oxide emission modeling for boiler combustion using accurate online support

vector regression," 2013 10th International Conference on Fuzzy Systems and

Knowledge Discovery (FSKD), 2013, pp. 989-993, doi:

10.1109/FSKD.2013.6816339.

[16]. Žliobaitė, I., Hollmén, J. Optimizing regression models for data streams with

missing values. Mach Learn 99, 47–73 (2015). https://doi.org/10.1007/s10994-

014-5450-3

[17]. Tsamardinos, I., Borboudakis, G., Katsogridakis, P. et al. A greedy feature

selection algorithm for Big Data of high dimensionality. Mach Learn 108, 149–

202 (2019). https://doi.org/10.1007/s10994-018-5748-7

[18]. Mukhoty, B., Dutta, S. & Kar, P. Robust non-parametric regression via

incoherent subspace projections. Mach Learn 110, 2941–2989 (2021).

https://doi.org/10.1007/s10994-021-06045-z

[19]. Osojnik, A., Panov, P. & Džeroski, S. Incremental predictive clustering trees

for online semi-supervised multi-target regression. Mach Learn 109, 2121–

2139 (2020). https://doi.org/10.1007/s10994-020-05918-z

[20]. Benavoli, A., Azzimonti, D. & Piga, D. A unified framework for closed-form

nonparametric regression, classification, preference and mixed problems with

Skew Gaussian Processes. Mach Learn 110, 3095–3133 (2021).

https://doi.org/10.1007/s10994-021-06039-x

[21]. Ribeiro, R.P., Moniz, N. Imbalanced regression and extreme value prediction.

Mach Learn 109, 1803–1835 (2020). https://doi.org/10.1007/s10994-020-

05900-9

https://doi.org/10.1007/s10994-014-5450-3
https://doi.org/10.1007/s10994-014-5450-3
https://doi.org/10.1007/s10994-018-5748-7
https://doi.org/10.1007/s10994-021-06045-z
https://doi.org/10.1007/s10994-020-05918-z
https://doi.org/10.1007/s10994-021-06039-x
https://doi.org/10.1007/s10994-020-05900-9
https://doi.org/10.1007/s10994-020-05900-9

