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Abstract  

We'll start the day by studying functions, specifically the kinds of functions that can be 

described by expressions with polynomials. In data modelling, the most common types of 

functions are polynomial functions and rational functions. With a little more research, 

functions like this can be broken down into subcategories. There are many ways to use 

these functions, such as in mathematical models of production costs, consumer demands, 

wildlife management, biological processes, and a wide range of other scientific 

investigations and research projects. These operations are also used a lot in many different 

other situations. By using these algorithms and the graphs they create, you can figure out 

what the data is likely to do in the future. Because it can be done, it shows that it is possible. 

We look at graph polynomials, graph transformations, and distance-related ideas in the 

context of algebraic graph theory. With new software that is still being made, it will be 

possible to figure out the distance polynomials of graphs with up to 200 vertices. The 

algorithm also finds out what the distance matrix's eigenvalues and eigenvectors are. With 

just the information about the neighbourhood, the method can make a "distance matrix." 

The Givens-Householder method is used to figure out the eigenvalues and eigenvectors, and 

the author's own programmes are used to figure out the characteristic polynomials of the 

distance matrix. New programmes are tested on a large number of graphs with a lot of 

vertices to make sure they work as planned. Even though distance polynomials are not 

usually unique structural invariants, it has been shown that they can be used to tell the 

difference between certain classes of cyclic isospectral graphs. 
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Introduction  

We have now been familiarised with a wide variety of functions, the likes of which include 

linear functions, constant functions, and quadratic functions, in addition to a great many 

other kinds of functions. These three functions are all a component of a broader group of 

functions that are collectively known as the polynomial functions. This bigger group of 

functions was named after their collective name. There are a great many more functions 

contained within this more comprehensive group. 

A power function is a form of a polynomial that contains the least amount of terms possible. 

This form is called the simplest form. A power function is a specialised type of polynomial 

that takes the form where is a real number, and is an integer, and is multiplied by. This type 

of polynomial is also known as a power factor. The power formula is another name for this 

particular type of polynomial. 

If the value being evaluated is even, the power function will also be referred to as "even," 

and if the value being evaluated is odd, the power function will also be known to as "odd." 

If the value being evaluated is even, then the power function will be referred to as "even." 

In the following table, the graphs of the first various power functions are organised 

according to the sequence in which they are given. 

 

 

Methodology  

Functions of Polynomials and the Graphs of Those Functions: Before we look at 

polynomials, it would be beneficial for us to become familiar with basic terms. 

The term "polynomial of degree n" refers to a function that takes the form 

when the value of an is smaller than zero. The coefficients of the polynomial are indicated 

by the numerals a0, a1, a2,..., and a correspondingly. These coefficients are written out in 

full below. The integer a0 is used to represent the constant coefficient, which is also 
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commonly referred to as the constant term. The number an, which represents the coefficient 

with the greatest power, is used to indicate the leading coefficient. An xn is an expression 

that is used to denote the leading phrase. 

 

It is essential to keep in mind that a polynomial is typically written as a series of 

progressively lower powers of the variable, and that the degree of a polynomial is equal to 

the power of the term that comes first in the equation. Consider, for instance: 

P  x   4x
3
  x

2
  5 

is an illustration of a polynomial of degree 3, for example. In addition, the phrase Q x 7x4 is 

an example of a monomial, which is a type of polynomial that only includes a single term. 

 

What Exactly Are Graphs of Polynomials, and How Do They Perform Their Functions? 

 

Polynomials of degrees 0 and 1 have linear equations, and the graphs of these polynomials 

are straight lines because these polynomials have linear equations. These polynomials 

have linear equations that describe them. Equations that contain polynomials of degree 2 

are referred to as quadratic equations, and the graphs of these equations are represented by 

parabolas. Quadratic equations can be solved by using the quadratic formula. After the 

degree of the underlying polynomial has passed 2, the graph has the ability to take on a 

wider variety of forms as the degree of the polynomial continues to climb. On the other 

hand, the graph of a polynomial function is invariably a curve that is continuous and 

smooth. This is because polynomials are functions that are composed of several terms (no 

breaks, gaps, or sharp corners). 

 

Those monomials of the form P multiplied by n as their base form. 

represent the simplest possible type of polynomial. 

Those monomials that take the form P multiplied by n. 

represent the most fundamental kind of polynomial. 
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According to what is shown in the graphic, the graph of 

 

P x xn has the same overall configuration as 

 

 

 

when 

 

n is an even number, and it has the same basic form as 

 

If n is an odd number, then y is greater than x3. Having said that, because of the degree n 

 

as the number of points increases, the graphs flatten out at the point of origin and grow 

more steep elsewhere. 

Some instances of monomials that can be changed into other forms include the 

following: 

When we are graphing certain polynomial functions, it is feasible for us to make use of the 

graphs of monomials that we are already familiar with and change them by making use of 

the methods that we discovered earlier in the process. This is something that we can do 

when we are graphing monomials. Because we have already completed this procedure, we 

will have the experience and knowledge necessary to successfully complete this task. 

End Behavior of Polynomials: 

A description of what happens when x becomes large in either a positive or negative 

direction is an illustration of the end behaviour of a polynomial. This behaviour can be 

positive or negative. It's possible that this behaviour will have a beneficial or bad impact. 

We will use the following notation for the purpose of explaining the behaviour of the 
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finished product, which is as follows: 

This theorem has a number of important repercussions, one of which is that the values of a 

polynomial are either wholly positive or entirely negative between any two subsequent 

zeros. This is just one of the crucial implications of this theorem. This is only one of the 

significant ramifications that may be drawn from this theorem. To put it another way, the 

graph of a polynomial either falls completely above or completely below the x-axis between 

two consecutive zeros. In other words, it is either completely above or completely below 

the x-axis. In other words, it is either entirely above or entirely below. Neither middle 

ground exists. 

 

In light of this, before we can even begin to sketch the graph of P, we need to first identify 

all of P's zeros. This is a necessary step before we can ever begin to sketch the graph of P. 

The third step is to select test points between successive zeros (as well as to the right and 

left of the zeros), with the intention of determining whether or not P x is positive or 

negative on each interval that was established by the zeros. This can be done by selecting 

test points between successive zeros (as well as to the right and left of the zeros). 

 

When graphing polynomial functions, the following instructions should be 

followed: 
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1. Locate all of the real zeros of the equation by factoring the polynomial; the real 

zeros are the x-intercepts of the graph. 2. Determine which of the real zeros are the 

most significant. You will need to factor the polynomial in order to achieve this 

objective. 

 

2. You are going to be responsible for creating a table of values for the polynomial 

as the second section of the examination. Include test points so that it can be 

determined whether the graph of the polynomial lies above or below the x-axis on 

the intervals that are dictated by the zeros. Include test points so that it can be 

determined whether or not test points are included. Include test points so it can be 

identified whether the zeros or the intervals are the ones that decide the range. The 

y-intercept is an essential component that must be included in the table that you've 

built. 

 

3. Determine how the polynomial acts when it reaches its final stage. It is 

necessary for you to determine how the polynomial will act when it is reduced to 

its final form. 

 

4. With the help of the graph, draw the intercepts as well as any other points that 

you discovered in the table. You will be able to build a smooth curve that spans 

these locations and has the right behaviour at the end if you follow the directions 

that are provided below and do so in the order that they are presented. 

 

COMPUTATION OF DISTANCE 

 

. It has been discovered that a graph that does not have any directed edges can make use of 

the D matrix in order to create a real-symmetric matrix for the graph. As a result, 

tridiagonalizing it utilising the Givens-Householder strategy as the preferred method is 

something that is both doable and practicable. This will bring about the diagonalization that 
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we want to see. After it has been transformed into a tridiagonal form, determining the 

eigenvalues of the changed matrix is a very straightforward process. Eigenvectors can also 

be generated using this method due to the fact that the unitary transformation that is utilised 

in this approach and is stored in each iteration of the process. This ensures that 

Eigenvectors can be generated using this method. The Householder algorithm does not 

allow the translation of non-symmetrical matrices into the tri-diagonal form, which means 

that this approach cannot be used for directed graphs. This is the reason why this method 

cannot be used for directed graphs. Because of this, it is essential to make use of other 

approaches, despite the fact that these strategies are noticeably less effective than the 

original ones. The author uses the recursive matrix product approach to construct the 

characteristic polynomials of the distance matrix. This approach, which was explained in 

greater detail in earlier publications published by the author, is used to produce the 

characteristic polynomials. After the generation of the distance matrix, the subroutines for 

computing the characteristic polynomials of weighted graphs that were constructed earlier 

receive it as an input, and then proceed to compute those polynomials. In spite of the fact 

that the weights in this specific case are the distances that exist between particular vertices 

in the graph, this is nevertheless done. z6 The fact that the matrix product code that was 

written by the authorz6 is capable of managing directed graphs in addition to graphs with 

imaginary edge weights is the one and only benefit that it offers. This is the advantage that 

it bestows upon its users. This is the most advanced method that has been developed up to 

this point for the purpose of computing characteristic polynomials, and as a direct 

consequence of this, it possesses all of these advantages for the purpose of computing 

distance polynomials as well. This method was developed for the purpose of computing 

characteristic polynomials. In this view, the method in question is the one that produces the 

best outcomes. The scaling method that was used could either have been applied to the 

computation of the distance matrix itself because, for larger graphs, the diagonal elements 

of A" that measure the number of self-returning walks (spectral moments) grow 

exponentially and, as a result, could cause arithmetic overflows; alternatively, the scaling 

method that was used could have been applied to the computation of the distance matrix 

itself. Since the vast majority of our focus is currently being directed toward the off-

diagonal components, the scaling procedure and the subsequent renormalization are able to 
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circumvent the issue of overflows. This is possible due to the fact that the off-diagonal 

components are receiving the majority of our attention. There is also the possibility of 

excluding totally the computation of the things that are located on the diagonal of A, which 

is an extra choice. The magnitudes of the coefficients in the distance polynomial are used to 

decide whether or not the scaling technique should be maintained for the computation of the 

characteristic polynomials of the D matrix. If they are large enough, the scaling technique 

should be used. It is possible that the scaling operation will not be performed if the correct 

response is provided to this question. The implementation of the scaling strategy was not 

required to be carried out on the great majority of the graphs that were considered for this 

article. [Case in point:] [Case in point:] One significant exception to this overarching notion 

is illustrated with a honeycomb lattice network that contains 96 vertices. 

CONCLUSION  

During our investigation, we came across precise equations for the hub polynomial of a 

number of different graphs, such as the helm graph, the flower graph, the corona of two 

graphs, various windmill graphs, and various transformation graphs. These precise 

equations were found for a number of different graphs. The formulas are presented in this 

space for your edification and convenience. After that, we proceeded to define an n-

wounded spider graph, and after that, we proceeded to identify the hub polynomial for it. 

Afterwards, we went to move on. By making use of other graphs, one is possible to obtain 

the hub polynomial of other graphs.  
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