GENERALISED RAMANUJAN'S DIOPHANTINE EQUATION $x^{2}+p=2^{n}$

G.D. Singh

Dept. of Mathematics, H. D. Jain College, Ara, V.K.S. University, Ara, Bihar, India

ABSTRACT

In this paper, generalized Ramanujan's Diophantine equation $x^{2}+p=2^{n}$ has been obtained for p 's having some prime values which are congruent 7 (mod 8). Another form of Ramanujan Problem and Conjecture has also been obtained.

Key words : Generalised Ramanujan's diophantine equation, Prime number, Congruent.

Introduction

Famous mathematician Ramanujan (1913) conjectured that the Diophantine equation $x^{2}+7=$ 2^{n} has only 5 positive integral solutions given by (x, n) where x is $1,3,5,11,181$ and n is $3,4,5$, 7,15 respectively. Since x is odd the given equation can be written as $(2 y-1)^{2}=2^{n}-7$, with solutions 1, 2, 3, 6 and 91 for y. This conjecture given by Ramanujan was proved by Nagell.

Mahanthapa, the high school student from Boulder Colorado considered the Diophantine equation $x^{3}+3=4^{n}$. He showed that this equation has only one positive integral solution given by $x=1$ and $n=1$. Then we discussed a family of Diophantine equation in general form given by $x^{3}+p=2^{n}$, where p is an odd integer. He obtained the following results:
(i) For the equation $x^{2}+p=2^{n}$ to have positive integral solutions, x must be an odd integer and x^{2} must be congruent to 1 modulo 8 .
(ii) If p is an odd prime greater than and not congruent $7(\bmod 8)$ then the equation has no solution.
(iii)If p is 3 then the equation has a unique solution $(1,2)$.

Usha Devi [1] discussed the Diophantine equations $x^{2}+19=7^{n}$ and $x^{2}+11=3^{n}$ and showed that these Diophantine equations have integer solutions only for $n=3$.

In this paper, an attempt has been made to discuss the solution of the. Diophantine equation $x^{2}+p=2^{n}$ for those values of p which are congruent $7(\bmod 8)$. Another form of Ramanujan Problem has also worked out.

Another form of Ramanujan Problem and Conjecture

The Diophantine equation $x^{2}+7=4^{n}$ has a unique solution given by $x=3$ and $n=2$.

Proof : The Ramanujan problem $x^{2}+7=2^{n}$ has a unique solution for an even value of n which is 4 and it can be written as 2^{2}. Thus if we consider the Diophantine equation $x^{2}+7=4^{n}$, it has unique solution given by $x=3$ and $n=2$.
Solution of the Diophantine Equation $x^{2}+23=2^{n}$
Here $p=23$ is a prime number which is congruent to $7(\bmod 8)$. Therefore the positive integral solutions of the given equation are possible. If we put $x=45, n=11$ then the given Diophantine equation is satisfied. Thus $(45,11)$ is the solution of the equation $x^{2}+23=2^{n}$.

Solution of the Diophantine Equation $x^{2}+31=2^{n}$
Here $p=31$ is a prime number which is congruent to $7(\bmod 8)$. Therefore the positive integral solutions of the given equation are possible. We see that $x=1, n=5$ satisfy the given Diophantine equation $x^{2}+31=2^{n}$. Thus $(1,5)$ is the solution of the equation $x^{2}+31=2^{n}$.

We see that $x=15, n=8$ also satisfy the given Diophantine equation $x^{2}+31=2^{n}$. Thus (15 , 8) is also a solution of the equation $x^{2}+31=2^{n}$.

Solution of the Diophantine Equation $x^{2}+47=2^{n}$
Here $p=47$ is a prime number which is congruent to $7(\bmod 8)$. Therefore the positive integral solutions of the given equation are possible. We see that $x=9, n=7$ satisfy the given Diophantine equation $x^{2}+47=2^{n}$. Thus $(9,7)$ is the solution of the equation $x^{2}+47=2^{n}$.
Solution of the Diophantine Equation $x^{2}+71=2^{n}$
Here $p=71$ is a prime number which is congruent to $7(\bmod 8)$. Therefore the positive integral solutions of the given equation are possible. We see that $x=21, n=9$ satisfy the given Diophantine equation $x^{2}+71=2^{n}$. Thus $(21,9)$ is the solution of the equation $x^{2}+71=2 n$.

Here $p=79$ is a prime number which is congruent to $7(\bmod 8)$. Therefore the positive integral solutions of the given equation are possible. We see that $x=7, n=7$ satisfy the given Diophantine equation $x^{2}+79=2^{n}$. Thus $(7,7)$ is the solution of the equation $x^{2}+79=2^{n}$.

Solution of the Diophantine Equation $\boldsymbol{x}^{2}+103=2^{\boldsymbol{n}}$

Here $p=103$ is a prime number which is congruent to $7(\bmod 8)$. Therefore the positive integral solutions of the given equation are possible. We see that $x=5, n=7$ satisfy the given Diophantine equation $x^{2}+103=2 n$. Thus (5,7) is the solution of the equation $x^{2}+103=2 n$.

Solution of the Diophantine Equation $\boldsymbol{x}^{2}+\mathbf{1 2 7}=\mathbf{2}^{\boldsymbol{n}}$
Here $p=127$ is a prime number which is congruent to $7(\bmod 8)$. Therefore the positive integral solutions of the given equation are possible. We see that $x=1, n=7$ satisfy the given Diophantine equation $x^{2}+127=2^{n}$. Thus $(1,7)$ is the solution of the equation $x^{2}+127=2^{n}$.

Solution of the Diophantine Equation $\boldsymbol{x}^{\mathbf{2}}+\mathbf{1 5 1}=\mathbf{2}^{\boldsymbol{n}}$
Here $p=151$ is a prime number which is congruent to $7(\bmod 8)$. Therefore the positive integral solutions of the given equation are possible. We see that $x=19, n=9$ satisfy the given Diophantine equation $x^{2}+151=2^{n}$. Thus $(19,9)$ is the solution of the equation $x^{2}+151=2^{n}$.

Solution of the Diophantine Equation $x^{2}+199=2^{n}$
Here $p=199$ is a prime number which is congruent to $7(\bmod 8)$. Therefore the positive integral solutions of the given equation are possible. We see that $x=43, n=11$ satisfy the given Diophantine equation $x^{2}+199=2^{n}$. Thus $(43,11)$ is the solution of the equation $x^{2}+199=2^{n}$.

Solution of the Diophantine Equation $\boldsymbol{x}^{2}+223=\mathbf{2}^{\boldsymbol{n}}$

Here $p=223$ is a prime number which is congruent to $7(\bmod 8)$. Therefore the positive. integral solutions of the given equation are possible. We see that $x=17, n=9$ satisfy the given Diophantine equation $x^{2}+223=2^{n}$. Thus $(17,9)$ is the solution of the equation $x^{2}+223=2^{n}$.

Solution of the Diophantine Equation $\boldsymbol{x}^{\mathbf{2}}+\mathbf{2 7 1}=\mathbf{2}^{\boldsymbol{n}}$

Here $p=271$ is a prime number which is congruent to $7(\bmod 8)$. Therefore the positive integral solutions of the given equation are possible. We see that $x=89, n=13$ satisfy the given Diophantine equation $x^{2}+271=2^{n}$. Thus $(89,13)$ is the solution of the equation $x^{2}+271=2^{n}$.

Solution of the Diophantine Equation $x^{2}+367=2^{n}$
Here $p=367$ is a prime number which is congruent to $7(\bmod 8)$. Therefore the positive integral solutions of the given equation are possible. We see that $x=41, n=11$ satisfy the given Diophantine equation $x^{2}+367=2^{n}$. Thus $(41,11)$ is the solution of the equation $x^{2}+367=2^{n}$.

Solution of the Diophantine Equation $x^{2}+431=2^{n}$
Here $p=431$ is a prime number which is congruent to $7(\bmod 8)$. Therefore the positive integral solutions of the given equation are possible. We see that $x=9, n=9$ satisfy the given Diophantine equation $x^{2}+431=2^{n}$. Thus $(9,9)$ is the solution of the equation $x^{2}+431=22^{n}$.

Solution of the Diophantine Equation $x^{2}+463=2^{n}$
Here $p=463$ is a prime number which is congruent to $7(\bmod 8)$. Therefore the positive integral solutions of the given equation are possible. We see that $x=7, n=9$ satisfy the given Diophantine equation $x^{2}+463=2^{n}$. Thus $(7,9)$ is the solution of the equation $x^{2}+463=2^{n}$.

Solution of the Diophantine Equation $x^{2}+503=2^{n}$
Here $p=503$ is a prime number which is congruent to $7(\bmod 8)$. Therefore the positive integral solutions of the given equation are possible. We see that $x=31, n=9$ satisfy the given Diophantine equation $x^{2}+503=2^{n}$. Thus $(3,9)$ is the solution of the equation $x^{2}+503=2^{n}$.

Conclusion

In this chapter, the generalized Ramanujan Diophantine equation $x^{2}+p=2^{n}$ has been solved for $p=23,31,47,71,79,103,127,151,199,223,271,367,431,463$ and 503. This Diophantine equation can further be solved for other values of p. Another form of Ramanujan's Diophantine has also been obtained.

References

[1] Devi, R.U. (2005) : "On the Diophantine equations $x+19=7^{n}$ and $x^{2}+11=3^{n "}$, The Mathematics Education, 39(2), 84-86.
[2] Dickson, L.E. (1952) : "History of the Theory of Number", Vol. II, Chelsea Publishing Company, New York.
[3] Guy, R.K. (1994) : "Unsolved problems in number theory", Springer-Verlag, New York. *****

