

652

An Interval Newton Methods for bounding

zeros of Polynomial Systems using B-spline

expansion

Deepak Gawali

Systems & Control Engineering Department, Indian Institute Technology, Bombay

ddgawali2002@gmail.com

Abstract:

The purpose of this paper is to study a technique of finding the zeros of a nonlinear polynomial

equations. Interval method can be used to obtain rigorous bounds on a roots in a given box. The

proposed algorithms for obtaining the roots of the polynomial system is based on the following

technique:

1) transformation of the original nonlinear algebraic equations into polynomial B-spline form;

2) includes a pruning step using B-spline Newton operator.

We compare the performance of our proposed B-spline Newton operator with the interval

Newton operator using two numerical examples. The results of the tests show the superiority of

the proposed algorithm, in terms of selected performance metrics.

Keywords: Nonlinear polynomial equations systems, Polynomial B-spline form, Interval analysis,

Interval Newton operator.

I. INTRODUCTION

Today, systems of polynomial equations arise in robotics, coding theory, optimization,

mathematical biology, computer vision, game theory, statistics, machine learning, control

theory and numerous other areas. A system of polynomial equations given by

 () 0,f x  (1)

where 1 2(, , ,),nf f f f and each if is a s dimensional polynomial of independent variables

1 2(, , ,).sx x x x The zeros of (1) can be obtained by several methods including continuation

methods [1] and elimination theory [2], [3].

653

In [4],[5], the authors proposed several root finding algorithms for the solving systems of

nonlinear polynomial equations. In [6],[7],[8],[9] the authors use interval methods for bounding

zeros of systems of nonlinear polynomial equations. The approach of interval computation

guaranteed an interval that contains all zeros of the system of polynomial equations can be

assured using branch and bound strategy. Generally, interval branch and bound methods are

time consuming because they requires evaluation of the polynomial functions during each

iteration.

Narrowing operators like Hansen-Sengupta, Newton, and Krawczyk can be introduced for

pruning the search space. The interval enclosures for these narrowing operators requires

evaluation of polynomial function derivatives during each iteration. Finding polynomial

function derivatives using interval methods is often time-consuming. Again, in [10],[11] the

authors combine Krawczyk contractor and domain subdivision for bounding zeros of systems of

nonlinear polynomial equations in B-spline and Bernstein form respectively.

We present an algorithm based on B-spline Newton operator for bounding zeros of systems

of polynomial equations. The B-spline coefficient computation algorithm in [12],[13],[14] used

for unconstrained optimization problems. The proposed algorithm combine the advantages of

the B-spline Newton algorithm, and the B-spline coefficient computation algorithm to find the

zeros of system of polynomial equations.

We use B-spline expansion approach to obtain estimate for the range of polynomial in

power form. On expanding the polynomial in power form into polynomial B-spline form the

minimum and the maximum value of B-spline coefficients provides the bound on the range of

polynomial in power form. To obtain tight bounds on the range enclosure we increase number

of segments of B-spline as shown in Figure. 1.

Figure 1: Improvement in the range enclosure of univariate polynomial by increasing the

number of segments of B-spline.

The computational complexity of B-spline coefficients computation as given in [14] is

(()).sm k mO Therefore, to minimize the computation time a B-spline with single segments is a

best option for bounding zeros of systems of polynomial equations.

654

This paper is organized as follows. Section 2, gives an overview of B-spline expansion and

domain subdivision approach. Section 3, we present the B-spline Newton operator and propose

an algorithm for bounding zeros of polynomial systems. In section 4, describes the results of

numerical test. Section 5 concludes the paper.

II. BACKGROUND: POLYNOMIAL B-SPLINE FORM

Firstly, we present brief review of B-spline form, which is used as inclusion function to

bound the range of multivariate polynomial in power from. The B-spline form is then used as

basis of main zero finding algorithm in section 3.

We follow the procedure given in [7],[6] for B-spline expansion. Let
1(,)lt t be a

multivariate polynomial in l real variables with highest degree  1 ,lm m (2).

1

1

1

1

1 1

0 0

(,) .
l

l

l

l

mm
ss

l s s l

s s

t t a t t
 

  (2)

2.1 Univariate polynomial

Lets consider univariate polynomial case first, (3)

  
0

() , , ,
m

s

s

s

t a t t p q


  (3)

for degree d (i.e. order d+1) B-spline expansion where ,d m on compact interval I=[p,q].

We use  ,d I u to represent the space of splines of degree d on the uniform grid partition

known as Periodic or Closed knot vector, u :

  0 1 1: ,k kt t t t    u (4)

Where : ,it p iy  0 ,i k  k denotes B-spline segments and  : / .y q p k 

Let dP reflects the space of degree d splines. We then denote the space of degree d splines

with 1dC  continuous on [,]p q and defined on u as

   1

1,u : { () : | [,] P , 0, , 1}.d

d i i dI C I t t i k  

     (5)

Since  , ud I is ()k d dimension linear space [8]. Therefore to construct basis of splines

supported locally for  ,u ,d I we use few extra knots 1dt t p    and 1k k dq t t    at the

ends in knot vector. These types of knot vectors are known as Open or Clamped knot vectors,

(6). Since knot vector u is uniform grid partition, we choose : it p iy  for

655

   , , 1 1, , ,i d k k d     

1 0 1 1 1: { }.d k k k k dt t p t t t q t t t                u (6)

The B-spline basis   
1

1

k
d

i
i

B t



of  , ud I is defined in terms of divided differences:

      1 1: [, ,, ,] .
dd

i i d i i i i dB t t t t t t t    
   (7)

where  .
d


 represent the truncated power of degree .d This can be easily proven that

   : , 1,d

i d

t a
B t i d i k

h

 
       

 
 (8)

where

      
1

0

11
: 1 ,

!

d
i d

d

i

d
t t l

ld






 
    

 
 (9)

     1 1: [, ,, ,] .
dd

i i d i i i i dB t t t t t t t    
   is the polynomial B-spline of the degree .d The B-

spline basis can be computed by a recursive relationship that is known as Cox-deBoor

recursion formula

           1 1

, 1, 1: 1 , 1,d d d

i i d i i d iB t t B t t B t d  

     (10)

where

 ,

, if ,
()

0, otherwise,

i

i i d

i d ii d

t t
t t

t tt







 



 (11)

and

 10
1, if [,),

() :
0, otherwise.

i i

i

t t t
B t


 


 (12)

The set of spline basis   
1

1

k
d

i
i

B t



 satisfies following interesting properties:

1. Each  d

iB t is positive on its support 1[,]i i dt t   .

2. Set of spline basis   
1

1

k
d

i
i

B t



 exhibits a partition of unity, i.e.  

1

1

1.
k

d

i

i

B t






656

 The power basis functions  
0

m
r

r
t


 in power form polynomial (3) can be represented in term

of B-spline using following relation

    
1

: , 0, , ,
k

ss d

v v

v d

t B t s d




  (13)

and the symmetric polynomial  s

v defined as

    Sym 1, ,
: , 0, , .

s s

v

s

v v d
s d

d
k

s


 

 
 
 
 

 (14)

Then by substituting (13) in (3) we get B-spline extension of power form polynomial (3) as

follows:

          
1 1 1

0 0

() : = = ,
m k k m k

s sd d d

s v v s v v v v

s v d v d s v d

t a B t a B t d B t  
  

    

 
  

 
     (15)

where

  

0

: .
m

s

v s v

s

d a 


 (16)

2.2 Multivariate polynomial case

Lets consider next multivariate power form polynomial (17) for B-spline expansion

1

1

1

1

1 1

0 0

(,) : ,
l

l

l

l

kk
ss

l s s l

s s

t t a t t a t
  

    k

s

s k

 (17)

 where  1: , , ls ss and  1: , , .lk kk By substituting (13) for each st , (17) can be

written as

          
1 1

1 1

1 1 1

1 1 1

11

1 2 ... 1

0 0

, ,..., ,
l l

l l

l l l

s l l

m km k
ss dd

l s s v v v v l

s s v d v d

t t t a B t B t  


   

   

        
1 1

1 1

1 1 1

1 1 1

11

... 1

0 0

... ,
s l

l l

l l l

l l l

k mk m
ss dd

s s v v v v l

v d v d s s

a B t B t 


   

 
   

 
    (18)

    
1

1

1 1

1 1

11

... 1... ... ,
l

l

l l

l l

kk
dd

v v v v l

v d v d

d B t B t


 

  

657

 we can write (18) as

    k

v v

v k

: .t d B t


 (19)

 where  1v : , , lv v and
vd is B-spline coefficient given as

    
1

1

1 1 1

1

... ...

0 0

...
l

l

l l l

l

mm
ss

v v s s v v

s s

d a  
 

  (20)

 The B-spline expansion of (17) is given by (18). The derivative of polynomial can be

found in a particular direction using the values of
vd i.e. B-spline coefficients of original

polynomial for ,Iy the derivative of a polynomial  t with respect to
rt in polynomial B-

spline form is (21),

      
,1 , 1

, 1

,

1 1

() ,1 , ,
r r

rr

r

r

Im

m
d d B t r l t







  

      
 

 s s m s

ms s

y y y y
u u

 (21)

 where u is a knot vector. The partial derivative ()r


y now includes range enclosure for

derivative of  on .y Lin and Rokne proposed (14) for symmetric polynomial and used closed

or periodic knot vector (4). Due to change in knot vector from (4) to (6) we propose new form

of (14) as follows,

    Sym 1, ,
: .

s s

v

v v d

d

s


 


 
 
 

 (22)

2.3 B-spline range enclosure property

  
1

: (), .
m

d

i i

i

t d B t t


  y (23)

 Let (23) be a B-spline expansion of polynomial ()q t in power form and ()q y denotes the

range of the power form polynomial on subbox .y The B-spline coefficients are collected in an

array () : (())i iD d y y where : {1, , }.m  Then for ()D y it holds

 () () [min (),max ()].q D D D y y y y (24)

 The range of the minimum and the maximum value of B-spline coefficients of

658

multivariate polynomial B-spline expansion provides an range enclosure of the multivariate

polynomial q on .y

2.4 Subdivision procedure

 We can improve the range enclosure obtained by B-spline expansion using subdivision of

subbox .y Let

1 1: , , , ,r r l l

         
     

y y y y y y y

represent the box to be subdivided in the r th direction (1).r l  Then two subboxes
A

y and

B
y are generated as follows

1 1: , , () , ,r r l lm         

     A
y y y y y y y

  1 1: , (), , ,r r l lm       
   B

y y y y y y y

where)(rm y is a midpoint of [,].
rr

y y

III. B-SPLINE NEWTON OPERATOR

In general problem of computing all zeros of a system of nonlinear polynomial equations

within some finite domain can be formulated based on the computation of the range of

nonlinear functions over some interval. In order to prune the search space for solution, some

form of interval contractors such as Hansen-Sengupta, interval Newton, Krawczyk, etc. need

to be used to contract the search bounds. The interval Newton operator is given in [19] as

()

, , .
()

p y
y y


  

  
 

N p y
p y

 (25)

Let : [,]p y y y be a continuously differentiable multivariate polynomial on ,y let

that there exists *y y such that  * 0,p y  and suppose that .y


y Then, since the mean value

theorem implies

    * *0 ,p y p y p y y
    

      
   

659

therefore
 

*

p y

y y
p 





 
 
 

 


 for some . y If  p y is any interval extension of the derivative

of p over ,y then

 

* , .

p y

y y y



 

 
 
 

  


y
p y

 (26)

Because of (26), any solution of () 0p y  that are in y must also be in N , , y
 

 





p y and

therefore (26) is the basis of the univariate Newton method (25).

The univariate Newton method (25) can be extended as a Multivariate Newton method

which execute an iteration equation similar to equation (25).

Suppose now that sy and () nf y  (continuously differentiable nonlinear)

polynomial equations in s unknowns, and let that .Sy


 Then a basic formula for

multivariate Newton method is

 , , ,f y y
  

  
 

N y w (27)

where w is a vector of interval bounding all zeros w of system ,Aw f y
 

   
 

 as   ,A f y

such that  f y is the Jacobi matrix f interval extension over .y Therefore obtaining the

interval vector w bounding the solution set to the interval linear system in (27) is an

important step in multivariate interval method,

   .f y
 

    
 

f y w

From (25) and (27), the interval vector w is given by

 

.

f y
 

 
 

 


w
f y

Thus the interval linear system form of multivariate Newton method is given as

660

   ,f y
 

     
 

f y w (28)

It is necessary to precondition the system (28) by a point matrix n nY  given by the

inverse of the midpoint matrix of an interval extension of the Jacobi matrix (),f y i.e.

  
1

mid .Y


 f y

 w ,A B  (29)

where  A Y  f y and .B Y f y
 

    
 

Then to compute sharper bounds on w the interval Gauss-Seidel method [5] or the

interval hull method [20] can be used to solve the system (29). The components of , , y
 

 
 

N f y

is given by (27). Then the intersection , , y
 

  
 

y N f y results in contracted domain of .y

Interval Newton method requires repeated evaluation of the (polynomial) function at
ˇ

y


 y to compute (),f y


 which can be time consuming operation. Moreover, interval

computations are used for finding ()f y to compute the precondition matrix ,Y which apart

from time consuming , often give quite pessimistic results.

The B-spline Newton method can alleviate some of these difficulties. In this method, it is

quite simple and straightforward to compute (),f y


 if we choose y


 to be any vertex point of

,y then ()f y


 is given directly by the B-spline coefficient value at y


. This obviates the need

to evaluate the system of polynomial at y


as done in the interval Newton method. In

proposed method the B-spline coefficients of the first partial derivatives are simply obtained

as the differences of coefficients of the original polynomial f (21).

We now present the algorithm for bounding zeros of polynomial systems similar to [21],

Algorithm 3.1: Algorithm for bounding zeros of polynomial systems

Input

:

Here cA is a cell structure containing the coefficients array Ia of the polynomials

in the power form. cN is a cell structure, containing degree vector, IN which

contains degree of each variable in polynomial function. Initial bound x of each

661

Output

:

variable and tolerance limit .ò

The zero(s) of f in x or   as no solution exists in .x

 Begin Algorithm

1

{Compute the B-spline coefficients}

Compute the B-spline coefficients ()iD x of given n polynomials on the initial box ,x

where 1, 2, , .i n (Use algorithms given in [12])

2 {Initialize iteration number}

Set 0,k   0
.x x

3

{Compute ()f x


}

Choose ()mid()kx


 x and obtain the value of ()f x


directly from the B-spline coefficient

value at the vertex of ()mid()k
x .

4 {Compute ()f x }

Use the B-spline coefficients of f on  
,

k
x to compute the B-spline coefficients of all the

first partial derivatives of f on  k
x via (21). From the minimum and maximum B-spline

coefficients of the first derivative, construct their range enclosure interval, and form the

interval Jacobian matrix ().f x

5 {Compute the precondition matrix Y }

Compute the preconditioning matrix Y as

   
1

= mid .kY


f x

6 {Solve linear interval system and update solution}

Solve the linear interval system

  
ˇ

,Y Y f x
 

      
 

f x v

662

and obtain  
, ,

k
x
 

 
 

N f x to update the solution as

      
= , , .

k k k
x
 

  
 

x x N f x

7 {Return   }

If  
0,

k
x then return   as solution and exit algorithm.

8 {Termination}

If  
,

k
x ò then return  1k

x as solution and exit algorithm.

9 Set 1k k  and go to step 3.

 End Algorithm

IV. NUMERICAL RESULTS

We consider the two problems from [22] to test and compare the performance of B-spline

Newton operator (BNO) over the interval Newton operator (INO). An tolerance limit of
0610ò is prescribed for computing the set of roots in each test problem. The number of

iterations and computational time (in seconds) are taken as the performance metrics. Our

MATLAB source code implementation of interval Newton operator using INTLAB [23] solver

is made available at [bit.ly/2UMNl7e] for all two test problems

We proposed a constrained global optimization algorithm to solve the problem of domain

of attraction in control system using polynomial B-spline form as an inclusion function to

bound the range of nonlinear multivariate polynomial function. The algorithm does not need

any linearization or relaxation techniques and solves the problem to specified accuracy.

Example 1: This example is taken from [22]. This is a problem with 4 variables. The

polynomial systems is given by

1 2 3 4

1 1 2 2 3 3 4 4

1 2 1 2 3 2 3 4 3 4 1 4

1 2 3 1 2 3 4 2 3 4 3 4 1 1 2 4

1 0,

0,

0,

0.

x x x x

x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x x x x x x x x x

    

    

    

    

and the bounds on the variables are

663

1 2 3 4[0.95,1.05], [0.95,1.05], [2.65, 2.6], [0.4, 0.37].x x x x       

From Table 2 we observe that the existing interval Newton operator require 4 iterations

to bound the roots of the polynomial systems with the accuracy of
06.10ò The proposed B-

spline Newton operator algorithm computes the result in 5 iterations within the same accuracy.

The computational time required for the proposed B-spline Newton operator is 1.7108 seconds,

whereas the interval Newton operator method requires computational time 2.235 seconds. The

results of algorithm are tabulated in Table 1.

Table 1: Roots of Example 1.

Roots

1x 1

2x 1

3x -2.6180

4x -0.3819

Table 2: Comparison of performance between BNO and INO.

Number

of

Iterations

Computation

Time (Sec.)

BNO 5 1.71

INO 4 2.23

Example 2: This example is taken from [22]. This is a problem with 5 variables. The

polynomial systems is given by

1 2 3 4 5

1 1 2 2 3 3 4 4 5 5

1 2 1 2 3 2 3 4 3 4 5 4 5 1 5

1 2 3 1 2 3 4 2 3 4 5 3 4 5 1 4 5 1 2 5

1 2 3 4 1 2 3 4 5 2 3 4 5 3 4 5 1 1 2 4 5 1 2 3 5

1 0,

0,

0,

0.

0.

x x x x x

x x x x x x x x x x

x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x

x x

     

     

     

     

     

and the bounds on the variables are

1 2 3 4 5[0.95,1.05], [3.75, 3.70], [0.28, 0.25], [0.95,1.01], [0.95,1.01].x x x x x        

664

 From Table 3 we observe that the existing interval Newton operator require 4 iterations

to bound the roots of the polynomial systems with the accuracy of
06.10ò The proposed B-

spline Newton operator algorithm computes the result in 7 iterations within the same accuracy.

The computational time required for the proposed B-spline Newton operator is 1.23 seconds,

whereas the interval Newton operator method requires computational time 1.44 seconds. The

results of algorithm are tabulated in Table 3.

Table 3: Roots of Example 2.

Roots

1x 1

2x -3.7320

3x -0.2679

4x 1

5x 1

Table 4: Comparison of performance between BNO and INO.

Number

of

Iterations

Computation

Time (Sec.)

BNO 7 1.23

INO 4 1.44

V. CONCLUSION

In this paper we presented an algorithm for contracting the search domain using B-spline

Newton operator. The computational examples demonstrate that the algorithm suggested quite

effectively solves the polynomial system in terms of computational time because B-spline

approach avoids evaluation of the polynomial functions but requires more number of iterations

due to over estimation in range enclosure of the first partial derivatives of the original

polynomial.

REFERENCES

[1] Morgan A. Solving Polynomial Systems Using Continuation for Engineering and Scientific

Problems. SIAM; 2009.

665

[2] Kolev L V. An improved method for global solution of non-linear systems. Reliab Comput.

1999;5(2):103-111.

[3] Kolev L. An interval method for global nonlinear analysis. IEEE Trans Circuits Syst I Fundam

Theory Appl. 2000;47(5):675-683.

[4] Jäger C, Ratz D, iyegyer K, Rats L. A combined method for enclosing all solutions of nonlinear

systems of polynomial equations. Reliab Comput. 1995;1(1):41-64. doi:10.1007/BF02390521

[5] Kearfott RB. Rigorous Global Search: Continuous Problems. Vol 13. Springer Science & Business

Media, Berlin; 2013.

[6] Hammer R, Hocks M, Kulisch U, Ratz D. Numerical Toolbox for Verified Computing I: Basic

Numerical Problems Theory, Algorithms, and Pascal-XSC Programs. Vol 21. Springer Science &

Business Media; 2012.

[7] Hansen E, Walster G. Global Optimization Using Interval Analysis: Revised and Expanded. Vol 264.

(2, ed.). Marcel Dekker, New York; 2004.

[8] Moore RE. Methods and Applications of Interval Analysis. SIAM, U.S.A.; 1979.

[9] Nataraj PS V, Sondur S. Construction of bode envelopes using REP based range finding algorithms.

Int J Autom Comput. 2011;8(1):112-121.

[10] Arounassalame M. Analysis of Nonlinear Electrical Circuits Using Bernstein Polynomials. Int J

Autom Comput. 2012;9(1):81-86.

[11] Michel D, Zidna A. Interval-Krawczyk Approach for Solving Nonlinear Equations Systems in B-

spline Form. In: Modelling, Computation and Optimization in Information Systems and Management

Sciences. Springer; 2015:455-465.

[12] Gawali DD, Zidna A, Nataraj PSV. Algorithms for unconstrained global optimization of nonlinear

(polynomial) programming problems: The single and multi-segment polynomial B-spline approach.

Comput Oper Res. 2017;87. doi:10.1016/j.cor.2017.02.013

[13] Gawali D., Zidna A., Nataraj P.S.V.. Solving Nonconvex Optimization Problems in Systems and

Control: A Polynomial B-Spline Approach. Vol 359.; 2015. doi:10.1007/978-3-319-18161-5_40

[14] Gawali D. D., Patil B. V., Zidna A, Nataraj P. S. V.. A B-Spline Global Optimization Algorithm for

Optimal Power Flow Problem. Vol 991.; 2020. doi:10.1007/978-3-030-21803-4_6

[15] Lin Q, Rokne JG. Methods for bounding the range of a polynomial. J Comput Appl Math.

1995;58:193-199.

[16] Lin Q, Rokne JG. Interval approximation of higher order to the ranges of functions. Comput Math

with Appl. 1996;31(7):101-109.

[17] DeVore RA, Lorentz GG. Constructive Approximation. Vol 303. Springer Science & Business

Media, Berlin; 1993.

[18] Kearfott RB. Encyclopedia of Optimization. In: Springer US; 2009:1763-1766.

[19] Neumaier A. A simple derivation of the Hansen-Bliek-Rohn-Ning-Kearfott enclosure for linear

interval equations. Reliab Comput. 1999;5(2):131-136.

[20] Nataraj PSV, Arounassalame M. An interval Newton method based on the Bernstein form for

bounding the zeros of polynomial systems. Reliab Comput. 2011;15(2):185-212.

[21] Verschelde J. The PHC Pack, the Database of Polynomial Systems. Published online 2001.

[22] Rump SM. INTLAB-interval laboratory. In: Developments in Reliable Computing. Springer;

1999:77-104.

