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Abstract: 

The purpose of this paper is to study a technique of finding the zeros of a nonlinear polynomial 

equations. Interval method can be used to obtain rigorous bounds on a roots in a given box. The 

proposed algorithms for obtaining the roots of the polynomial system is based on the following 

technique: 

1) transformation of the original nonlinear algebraic equations into polynomial B-spline form; 

2) includes a pruning step using B-spline Newton operator. 

We compare the performance of our proposed B-spline Newton operator with the interval 

Newton operator using two numerical examples. The results of the tests show the superiority of 

the proposed algorithm, in terms of selected performance metrics. 

 

Keywords:  Nonlinear polynomial equations systems, Polynomial B-spline form, Interval analysis, 

Interval Newton operator. 

 

 

I. INTRODUCTION 

Today, systems of polynomial equations arise in robotics, coding theory, optimization, 

mathematical biology, computer vision, game theory, statistics, machine learning, control 

theory and numerous other areas. A system of polynomial equations given by  

 

 ( ) 0,f x   (1) 

 

where 1 2( , , , ),nf f f f  and each if   is a s dimensional polynomial of independent variables 

1 2( , , , ).sx x x x The zeros of (1) can be obtained by several methods including continuation 

methods [1] and elimination theory [2], [3]. 
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In [4],[5], the authors proposed several root finding algorithms for the solving systems of 

nonlinear polynomial equations. In [6],[7],[8],[9] the authors use interval methods for bounding 

zeros of systems of nonlinear polynomial equations. The approach of interval computation 

guaranteed an interval that contains all zeros of the system of polynomial equations can be 

assured using branch and bound strategy. Generally, interval branch and bound methods are 

time consuming because they requires evaluation of the polynomial functions during each 

iteration.  

Narrowing operators like Hansen-Sengupta, Newton, and Krawczyk can be introduced for 

pruning the search space. The interval enclosures for these narrowing operators requires 

evaluation of polynomial function derivatives during each iteration. Finding polynomial 

function derivatives using interval methods is often time-consuming. Again, in [10],[11] the 

authors combine Krawczyk contractor and domain subdivision for bounding zeros of systems of 

nonlinear polynomial equations in B-spline and Bernstein form respectively. 

We present an algorithm based on B-spline Newton operator for bounding zeros of systems 

of polynomial equations. The B-spline coefficient computation algorithm in [12],[13],[14] used 

for unconstrained optimization problems. The proposed algorithm combine the advantages of 

the B-spline Newton algorithm, and the B-spline coefficient computation algorithm to find the 

zeros of system of polynomial equations. 

We use B-spline expansion approach to obtain estimate for the range of polynomial in 

power form. On expanding the polynomial in power form into polynomial B-spline form the 

minimum and the maximum value of B-spline coefficients provides the bound on the range of 

polynomial in power form. To obtain tight bounds on the range enclosure we increase number 

of segments of B-spline as shown in Figure. 1.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Improvement in the range enclosure of univariate polynomial by increasing the 

number of segments of B-spline. 

 

The computational complexity of B-spline coefficients computation as given in [14] is 

(( ) ).sm k mO  Therefore, to minimize the computation time a B-spline with single segments is a 

best option for bounding zeros of systems of polynomial equations. 
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This paper is organized as follows. Section 2, gives an overview of B-spline expansion and 

domain subdivision approach. Section 3, we present the B-spline Newton operator and propose 

an algorithm for bounding zeros of polynomial systems. In section 4, describes the results of 

numerical test. Section 5 concludes the paper. 

 

II. BACKGROUND: POLYNOMIAL B-SPLINE FORM  

Firstly, we present brief review of B-spline form, which is used as inclusion function to 

bound the range of multivariate polynomial in power from. The B-spline form is then used as 

basis of main zero finding algorithm in section 3.     

We follow the procedure given in [7],[6] for B-spline expansion. Let 
1( , )lt t  be a 

multivariate polynomial in l  real variables with highest degree  1 ,lm m (2). 

 

                                              
1

1

1

1

1 1

0 0

( , ) .
l

l

l

l

mm
ss

l s s l

s s

t t a t t
 

   (2) 

 

2.1 Univariate polynomial  

 

Lets consider univariate polynomial case first, (3) 

 

  
0

( ) ,  , ,
m

s

s

s

t a t t p q


   (3) 

 

for degree d  (i.e. order d+1) B-spline expansion where ,d m  on compact interval I=[p,q].  

We use  ,d I u  to represent the space of splines of degree d on the uniform grid partition 

known as Periodic or Closed  knot vector, u :  

 

                                                0 1 1: ,k kt t t t    u  (4) 

 

Where : ,it p iy  0 ,i k  k  denotes B-spline segments and  : / .y q p k   

Let dP  reflects the space of degree d  splines. We then denote the space of degree d  splines 

with 1dC   continuous on [ , ]p q  and defined on u as 

 

   1

1,u : { ( ) : | [ , ] P ,  0, , 1}.d

d i i dI C I t t i k  

      (5) 

 

Since  , ud I is ( )k d  dimension linear space [8]. Therefore to construct basis of splines 

supported locally for  ,u ,d I  we use few extra knots 1dt t p    and 1k k dq t t     at the 

ends in knot vector. These types of knot vectors are known as Open or Clamped knot vectors, 

(6). Since knot vector u  is uniform grid partition, we choose :  it p iy  for 
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   , , 1 1, , ,i d k k d       

 

 
1 0 1 1 1: { }.d k k k k dt t p t t t q t t t                u  (6) 

 

The B-spline basis   
1

1

k
d

i
i

B t



of  , ud I  is defined in terms of divided differences: 

 

      1 1: [ , ,, , ] .
dd

i i d i i i i dB t t t t t t t    
    (7) 

 

where  .
d


 represent the truncated power of degree .d  This can be easily proven that 

 

                                            : , 1,d

i d

t a
B t i d i k

h

 
       

 
 (8) 

 

where 

 

                                               
1

0

11
: 1 ,

!

d
i d

d

i

d
t t l

ld






 
    

 
  (9) 

 

     1 1: [ , ,, , ] .
dd

i i d i i i i dB t t t t t t t    
    is the polynomial B-spline of the degree .d  The B-

spline basis can be computed by a recursive relationship that is known as Cox-deBoor  

recursion formula 

 

                                       1 1

, 1, 1: 1 ,  1,d d d

i i d i i d iB t t B t t B t d  

      (10) 

 

where  

 ,

,     if  ,
( )

0,     otherwise,

i

i i d

i d ii d

t t
t t

t tt







 



 (11) 

and 

 

                                             10
1,     if  [ , ),

( ) :
0,     otherwise.

i i

i

t t t
B t


 


 (12) 

 

The set of spline basis   
1

1

k
d

i
i

B t



 satisfies following interesting properties: 

1. Each  d

iB t  is positive on its support 1[ , ]i i dt t   . 

2. Set of spline basis   
1

1

k
d

i
i

B t



 exhibits a partition of unity, i.e.  

1

1

1.
k

d

i

i

B t




  
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 The power basis functions  
0

m
r

r
t


 in power form polynomial (3) can be represented in term 

of B-spline using following relation 

 

                                                
1

: , 0, , ,
k

ss d

v v

v d

t B t s d




   (13) 

 

and the symmetric polynomial  s

v  defined as 

 

                                          Sym 1, ,
: ,  0, , .

s s

v

s

v v d
s d

d
k

s


 

 
 
 
 

 (14) 

Then by substituting (13) in (3) we get B-spline extension of power form polynomial (3) as 

follows: 

 

                               
1 1 1

0 0

( ) : = = ,
m k k m k

s sd d d

s v v s v v v v

s v d v d s v d

t a B t a B t d B t  
  

    

 
  

 
      (15) 

 

where   

 

                                                     

0

: .
m

s

v s v

s

d a 


  (16) 

 

2.2 Multivariate polynomial case 

 

Lets consider next multivariate power form polynomial (17)  for B-spline expansion 

 

                                       
1

1

1

1

1 1

0 0

( , ) : ,
l

l

l

l

kk
ss

l s s l

s s

t t a t t a t
  

    k

s

s k

 (17) 

 

      where  1: , , ls ss and  1: , , .lk kk  By substituting (13) for each st , (17) can be 

written as 

 

                                   
1 1

1 1

1 1 1

1 1 1

11

1 2 ... 1

0 0

, ,..., ... ... ,
l l

l l

l l l

s l l

m km k
ss dd

l s s v v v v l

s s v d v d

t t t a B t B t  


   

      

                                                  
1 1

1 1

1 1 1

1 1 1

11

... 1

0 0

... ... .... ... ,
s l

l l

l l l

l l l

k mk m
ss dd

s s v v v v l

v d v d s s

a B t B t 


   

 
   

 
     (18) 

                                              
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1 1
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... 1... ... ,
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l l

l l

kk
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v v v v l

v d v d

d B t B t


 

     
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     we can write (18) as 

 

                                                          k

v v

v k

: .t d B t


  (19) 

 

     where  1v : , , lv v and 
vd is B-spline coefficient given as 

 

                                                    
1

1

1 1 1

1

... ...

0 0

... .... .
l

l

l l l

l

mm
ss

v v s s v v

s s

d a  
 

   (20) 

 

          The B-spline expansion of  (17) is given by (18). The derivative of polynomial can be 

found in a particular direction using the values of 
vd i.e. B-spline coefficients of original 

polynomial for ,Iy the derivative of a polynomial  t with respect to 
rt  in polynomial B-

spline form is (21), 

 

                            
,1 , 1

, 1

,

1 1

( ) ,1  , ,
r r

rr

r

r

Im

m
d d B t r l t







  

      
 

 s s m s

ms s

y y y y
u u

 (21) 

 

         where u is a knot vector. The partial derivative ( )r


y now includes range enclosure for 

derivative of  on .y  Lin and Rokne proposed (14) for symmetric polynomial and used closed 

or periodic knot vector (4).  Due to change in knot vector from (4) to (6) we propose new form 

of (14) as follows, 

 

                                               Sym 1, ,
: .

s s

v

v v d

d

s


 


 
 
 

 (22) 

 

2.3 B-spline range enclosure property  

 

                                                  
1

: ( ), .
m

d

i i

i

t d B t t


  y  (23) 

 

    Let (23) be a B-spline expansion of polynomial ( )q t in power form and ( )q y denotes the 

range of the power form polynomial on subbox .y  The B-spline coefficients are collected in an 

array ( ) : ( ( ))i iD d y y where : {1, , }.m   Then for ( )D y it holds 

 

                                          ( ) ( ) [min ( ),max ( )].q D D D y y y y  (24) 

 

          The range of the minimum and the maximum value of B-spline coefficients of 
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multivariate polynomial B-spline expansion provides an range enclosure of the multivariate 

polynomial q on .y  

 

 

2.4 Subdivision procedure 

 

  We can improve the range enclosure obtained by B-spline expansion using subdivision of 

subbox .y  Let  

 

                                   
1 1: , , , ,r r l l

         
     

y y y y y y y  

 

represent the box to be subdivided in the r th direction (1 ).r l   Then two subboxes 
A

y and 

B
y are generated as follows 

 

                                   
1 1: , , ( ) , ,r r l lm         

     A
y y y y y y y   

                                    1 1: , ( ), , ,r r l lm       
   B

y y y y y y y  

  

where )( rm y is a midpoint of [ , ].
rr

y y  

 

III. B-SPLINE NEWTON OPERATOR 

In general problem of computing all zeros of a system of nonlinear polynomial equations 

within some finite domain can be formulated based on the computation of the range of 

nonlinear functions over some interval. In order to prune the search space for solution, some 

form of interval contractors such as Hansen-Sengupta, interval Newton, Krawczyk, etc. need 

to be used to contract the search bounds. The interval Newton operator is given in [19] as 

 

                                                
( )

, , .
( )

p y
y y


  

  
 

N p y
p y

 (25) 

 

Let : [ , ]p y y y  be a continuously differentiable multivariate polynomial on ,y  let 

that there exists *y y  such that  * 0,p y   and suppose that .y


y  Then, since the mean value 

theorem implies  

                                          * *0 ,p y p y p y y
    

      
   
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therefore 
 

*

p y

y y
p 





 
 
 

 


 for some . y  If  p y  is any interval extension of the derivative 

of p  over ,y  then 

 

                                                
 

*  ,   .

p y

y y y



 

 
 
 

  


y
p y

 (26) 

 

Because of (26), any solution of ( ) 0p y   that are in y  must also be in N , , y
 

 





p y  and 

therefore (26) is the basis of the  univariate Newton method (25).  

 

The  univariate Newton method (25) can be extended as a Multivariate Newton method 

which execute an iteration equation similar to equation (25). 

 

Suppose now that sy  and ( ) nf y   (continuously differentiable nonlinear) 

polynomial equations in s  unknowns, and let that .Sy


  Then a basic formula for 

multivariate Newton method is 

                                                    , , ,f y y
  

  
 

N y w  (27) 

 

where w  is a vector of interval bounding all zeros w  of system ,Aw f y
 

   
 

 as   ,A f y

such that  f y  is the Jacobi matrix f  interval extension over .y  Therefore obtaining the 

interval vector w  bounding the solution set to the interval linear system in (27) is an 

important step in multivariate interval method, 

                                                     .f y
 

    
 

f y w   

From (25) and (27), the interval vector w  is given by 

 

                                                      
 

.

f y
 

 
 

 


w
f y

  

 

Thus the interval linear system form of multivariate Newton method is given as  
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                                                   ,f y
 

     
 

f y w  (28) 

 

It is necessary to precondition the system (28) by a point matrix n nY   given by the 

inverse of the midpoint matrix of an interval extension of the Jacobi matrix ( ),f y i.e. 

  
1

mid  .Y


 f y  

 

 w ,A B   (29) 

 

where  A Y  f y and .B Y f y
 

    
 

 

Then to compute sharper bounds on w  the interval Gauss-Seidel method [5] or the 

interval hull method [20] can be used to solve the system (29). The components of , , y
 

 
 

N f y  

is given by (27). Then the intersection , , y
 

  
 

y N f y  results in contracted domain of .y  

Interval Newton method requires repeated evaluation of the (polynomial) function at 
ˇ

y


 y  to compute ( ),f y


 which can be time consuming operation. Moreover, interval 

computations are used for finding ( )f y  to compute the precondition matrix ,Y  which apart 

from time consuming , often give quite pessimistic results. 

The B-spline Newton method can alleviate some of these difficulties. In this method, it is 

quite simple and straightforward to compute ( ),f y


 if we choose y


 to be any vertex point of 

,y  then ( )f y


 is given directly by the B-spline coefficient value at y


. This obviates the need 

to evaluate the system of polynomial at y


as done in the interval Newton method. In 

proposed method the B-spline coefficients of the first partial derivatives are simply obtained 

as the differences of coefficients of the original polynomial f (21). 

We now present the algorithm for bounding zeros of polynomial systems similar to [21], 

 

Algorithm 3.1: Algorithm for bounding zeros of polynomial systems 

 
Input    

: 

 

Here cA  is a cell structure containing the coefficients array Ia  of the polynomials 

in the power form. cN  is a cell structure, containing degree vector, IN  which 

contains degree of each variable in polynomial function. Initial bound x  of each 
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Output 

: 

variable and tolerance limit .ò  

The zero(s) of f in x or   as no solution exists in .x  

     Begin Algorithm 

1 

 

 

{Compute the B-spline coefficients} 

Compute the B-spline coefficients ( )iD x  of given n  polynomials on the initial box ,x  

where 1, 2, , .i n ( Use algorithms given in [12]) 

2 {Initialize iteration number} 

Set 0,k   0
.x x  

3 

 

{Compute ( )f x


} 

Choose ( )mid( )kx


 x and obtain the value of ( )f x


directly from the B-spline coefficient 

value at the vertex of ( )mid( )k
x . 

 

 

 

      

4 {Compute ( )f x } 

Use the B-spline coefficients of f on  
,

k
x to compute the B-spline coefficients of all the 

first partial derivatives of f on  k
x via (21). From the minimum and maximum B-spline 

coefficients of the first derivative, construct their range enclosure interval, and form the 

interval Jacobian matrix ( ).f x  

5 {Compute the precondition matrix Y } 

Compute the preconditioning matrix Y as 

   
1

= mid  .kY


f x  

6 {Solve linear interval system and update solution} 

Solve the linear interval system 

  
ˇ

,Y Y f x
 

      
 

f x v  
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and obtain  
, ,

k
x
 

 
 

N f x to update the solution as 

      
=  , , .

k k k
x
 

  
 

x x N f x  

7 {Return   } 

If  
0,

k
x then return   as solution and exit algorithm. 

8 {Termination} 

If  
,

k
x ò then return  1k

x  as solution and exit algorithm. 

9 Set 1k k  and go to step 3. 

      End Algorithm 

 

IV. NUMERICAL RESULTS 

We consider the two problems from [22] to test and compare the performance of B-spline 

Newton operator (BNO) over the interval Newton operator (INO). An tolerance limit of 
0610ò  is prescribed for computing the set of roots in each test problem. The number of 

iterations and computational time (in seconds) are taken as the performance metrics. Our 

MATLAB source code implementation of interval Newton operator using INTLAB [23] solver 

is made available at [bit.ly/2UMNl7e] for all two test problems 

 

We proposed a constrained global optimization algorithm to solve the problem of domain 

of attraction in control system using polynomial B-spline form as an inclusion function to 

bound the range of nonlinear multivariate polynomial function.  The algorithm does not need 

any linearization or relaxation techniques and solves the problem to specified accuracy.   

 

Example 1: This example is taken from [22].  This is a problem with 4 variables. The 

polynomial systems is given by 

 

1 2 3 4

1 1 2 2 3 3 4 4

1 2 1 2 3 2 3 4 3 4 1 4

1 2 3 1 2 3 4 2 3 4 3 4 1 1 2 4

1 0,

0,

0,

0.

x x x x

x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x x x x x x x x x

    

    

    

    
 

 

and the bounds on the variables are  
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1 2 3 4[0.95,1.05],  [0.95,1.05],  [ 2.65, 2.6],  [ 0.4, 0.37].x x x x         
 

From Table 2 we observe that the existing interval Newton operator require $4$ iterations 

to bound the roots of the polynomial systems with the accuracy of 
06.10ò  The proposed B-

spline Newton operator algorithm computes the result in 5 iterations within the same accuracy. 

The computational time required for the proposed B-spline Newton operator is 1.7108 seconds, 

whereas the interval Newton operator method requires computational time 2.235 seconds. The 

results of algorithm are tabulated in Table 1. 

 

Table 1:  Roots of Example 1. 

Roots 

1x  1 

2x  1 

3x  -2.6180 

4x  -0.3819 

Table 2: Comparison of performance between BNO and INO. 

 
Number 

of 

Iterations 

Computation 

Time (Sec.) 

BNO 5 1.71 

INO 4 2.23 

 

Example 2: This example is taken from [22].  This is a problem with 5 variables. The 

polynomial systems is given by 

 

1 2 3 4 5

1 1 2 2 3 3 4 4 5 5

1 2 1 2 3 2 3 4 3 4 5 4 5 1 5

1 2 3 1 2 3 4 2 3 4 5 3 4 5 1 4 5 1 2 5

1 2 3 4 1 2 3 4 5 2 3 4 5 3 4 5 1 1 2 4 5 1 2 3 5

1 0,

0,

0,

0.

0.

x x x x x

x x x x x x x x x x

x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x x x x x x

     

     

     

     

       
 

and the bounds on the variables are 

 

1 2 3 4 5[0.95,1.05],  [ 3.75, 3.70],  [ 0.28, 0.25],  [0.95,1.01],  [0.95,1.01].x x x x x          
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     From Table 3 we observe that the existing interval Newton operator require 4 iterations 

to bound the roots of the polynomial systems with the accuracy of 
06.10ò  The proposed B-

spline Newton operator algorithm computes the result in 7 iterations within the same accuracy. 

The computational time required for the proposed B-spline Newton operator is 1.23 seconds, 

whereas the interval Newton operator method requires computational time 1.44 seconds. The 

results of algorithm are tabulated in Table 3. 

 

Table 3:  Roots of Example 2. 

Roots 

1x  1 

2x  -3.7320 

3x  -0.2679 

4x  1 

5x  1 

 

Table 4: Comparison of performance between BNO and INO. 

 
Number 

of 

Iterations 

Computation 

Time (Sec.) 

BNO 7 1.23 

INO 4 1.44 

 

V. CONCLUSION 

In this paper we presented an algorithm for contracting the search domain using B-spline 

Newton operator. The computational examples demonstrate that the algorithm suggested quite 

effectively solves the polynomial system in terms of computational time because B-spline 

approach avoids evaluation of the polynomial functions but requires more number of iterations 

due to over estimation in range enclosure of the first partial derivatives of the original 

polynomial. 
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