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ABSTRACT 

Deep learning has demonstrated significant efficacy across various domains and is increasingly being 

embraced as a superior alternative to conventional machine learning models by a growing number of 

individuals. The utilization of deep learning methods, namely convolutional neural networks (CNN), 

offers significant advantages to the medical domain, which necessitates the processing and analysis of 

a substantial volume of images. The objective of this study is to construct a deep learning model that 

can effectively tackle the blood cell classification predicament, which is widely recognized as a highly 

formidable issue in the field of blood diagnosis. A convolutional neural network (CNN) architecture 

has been developed to autonomously categorize blood cell pictures into distinct cell subtypes. A series 

of experiments were conducted on a dataset of 13,000 distinct images depicting various categories of 

blood cells. The results demonstrate that the proposed model exhibits superior performance with 

respect to the evaluation metrics. 
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1. INTRODUCTION 

Sickle cell disease (SCD), also known as sickle cell anemia, is a type of inherited RBC disorder 

associated with abnormal hemoglobin S (HbS) [1]. When HbS molecules polymerize inside RBCs, 

due to lack of oxygen, they affect greatly the shape, elasticity, and adhesion properties of RBCs. 

Moreover, the RBCs become stiff and more fragile, with vastly heterogeneous shapes in the cell 

population [2], which makes this problem an ideal candidate for the examination of morphological 

heterogeneity. Unlike the normal RBCs, which are flexible and move easily even through exceedingly 

small blood vessels, sickle RBCs promote vaso-occlusion phenomena. Hence, SCD patients are 

afflicted with the risk of life-threatening complications, stroke and organ damage over time, resulting 

in a reduced life expectancy. According to a recent study [3], as of 2013 about 3.2 million people have 

SCD while an additional 43 million have sicklecell trait, resulting in 176,000 deaths in 2013, up from 

113,000 deaths in 1990, mostly of African origin. The prime hallmark of SCD is that is surprisingly 

variable in its clinical severity. Available methods for treating SCD are mainly supportive and mostly 

aim at symptom control but lack the active monitoring of the health status as well as the prediction of 

disease development in different clinical stages [4]. Recent developments in advanced medical 

imaging technology and computerized image processing methods could provide an effective tool in 

monitoring the status of SCD patients. Indeed, Darrow et al. [5] recently demonstrated a positive 

correlation between cell volume and protrusion number using soft X-ray tomography. Van beers et al. 

[6] have also shown highly specific and sensitive sickle and normal erythrocyte classification based 

on sickle imaging flow cytometry assay, a methodology that could be useful in assessing drug 

efficacy in SCD. Therefore, implementing an automated, high-throughput cell classification method 

could become an enabling technology to improve the future clinical diagnosis, prediction of treatment 
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outcome, and especially therapy planning. However, there are several major technical challenges for 

automatic cell classification: 1) RBCs may touch or overlap each other or appear as clusters in the 

image, which makes it difficult to detect the hidden edge of cells. 2) The RBC region and the 

background may have low contrast in the intensity. 3) The boundaries of RBCs may be blurry due to 

the influence of imaging procedure. 4) Very complex and heterogeneous shapes of RBCs are present 

in SCD. 5) Artifacts may be present, for instance, dirt on the imaging light path, various halos and 

shading. 6) Finally, because RBCs lack a nucleus, methods utilizing the nuclei location as an apparent 

marker for cell counting and detection are not applicable. 

2. LITERATURE SURVEY 

Due to ineffectiveness of the methods and given the recent advances of deep learning technique, Gao 

et al. [1] performed HEp-2 cell classification based on deep CNNs. Also, in order to improve the 

diversity of single HEp-2 cell data samples, Li et al. [2] carried out classification experiments based 

on deep CNNs by using four different patients’ datasets under different lighting conditions. However, 

for the currently available automated machine learning methods, which could be used for cell 

classification, the following are still drawbacks: 1) the classification studies are mostly directly based 

on already prepared single HEp-2 cellular data, hence, ignoring the initial key procedure of single cell 

extraction from the raw image data; 2) the adopted conventional machine learning methods are time 

consuming for the hand-crafted feature extraction and need specific human expertise; moreover, they 

need an accurate cell segmentation; 3) the classification accuracy is limited by the selected features 

and the performance of selected classifier. For our application, since RBCs of SCD exhibit special 

characteristics in terms of heterogeneous shapes and variant sizes, there is still no efficient tool that 

can be used to facilitate the automated inspection and recognition of various kinds of RBC patterns 

which are present in SCD blood. The focus of our paper is to develop an automated, high-throughput 

sickle cell classification method based on the Convolutional Neural Networks (CNNs), taking 

advantage of the hierarchical feature learning goodness of deep learning. 

3. PROPOSED METHOD 

Convolutional neural networks have shown success in image classification [23– 25]. the strength of a 

CNN lies on its ability to employ a multilayer architecture to automatically extract high-level features 

through a series of convolutional, nonlinear transformation, down sampling (pooling), and fully 

connected layers of the network. To train a CNN for image classification, first the network 

architecture must be designed. ,is task is to determine the types, number, and order of layers in the 

network. the designed network, given a set of 2D images along with their corresponding class labels, 

attempts to find features useful for distinguishing the classes. A CNN employs a learning method that 

consists of two repeated and alternated passes, naming feedforward and backward pass. A typical 

CNN’s feedforward pass performs two major tasks. the first task is feature extraction via the use of 

multiple convolutional feature extraction (CFE) layers. For this task, an image is passed through 

multiple CFE layers in a serial manner. A CFE layer consists of three sublayers: a convolutional 

sublayer, followed by a nonlinear transformation sublayer, and then by a pooling sublayer. Each CFE 

layer takes features from the previous layer and constructs higher-level features is process often 

repeats many times in order to eventually extract high-level features from the image. These features 

then become input for the fully connected layers in the second task of a feedforward pass, which 

performs classification of the input image and obtains some error. In a backward pass, the error 

obtained from a feedforward pass propagates backward to adjust the weights in the convolutional 

sublayers, and therefore, they can better extract features relevant to the classification problem. the 

same error is also used to find proper weights for the fully connected layers. 
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Architecture of ConVNet: the overall architecture of ConVNet used in this study is shown in Figure 1. 

The network consists of seven layers, excluding the input layer. The input layer takes in a 256 × 256 

RGB color image when each color channel is processed separately. The first, second, and third layers 

of ConVNet are CFE layers. the first and second CFE layer each applies 32 of 3 × 3 filters to an 

image in the convolutional sublayer. the image’s border is padded with 0 to maintain the image size of 

256. The nonlinear transformation sublayer employs the ReLU activation function. the max pooling 

sublayer applies a 2 × 2 filter to the image which results in reducing the image size to its half. The 

third CFE layer has similar structure to the first one, except the number of filters is 64. At this point, 

ConVNet extracts 64 features, each represented by a 32 × 32 array for each color channel. The fourth 

layer is a flatten layer. The flatten layer transforms a multidimensional array into one-dimensional 

array by simply concatenating the entries of the multidimensional array together. the output of this 

flatten layer is a one-dimensional array of size 65536. The fifth layer is a fully connected artificial 

neural network (ANN) with the ReLU activation function that maps 65536 input values to 64 output 

values. The sixth layer is a dropout layer. 50 percent of the input values coming into this layer are 

dropped to zero to reduce the problem of overfitting. The seventh layer is a fully connected ANN with 

the sigmoid activation function that maps 64 input values to 3 class labels. 

 

Figure 1: Architecture of ConVNet 

 

Figure 2: Image classification using ConVNet. 
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The CNN consists of seven layers. Layers 1, 2, and 3 implement feature extraction of cell images. 

Layer 4 transforms 64 extracted features into one-dimensional array of size 65536. Layer 5 maps 

65536 inputs into 64 outputs. Layer 6 drops 50 percent of the 64 inputs at random. Layer 7 performs 

classification of 3 types of ALL subtypes. Procedure of ConVNet. The overall procedure of image 

classification using ConVNet is presented in Figure 2. Since a large amount of data is essential in 

achieving high performance for CNN, we utilize data augmentation techniques to increase the number 

of images in the training set from 121 to 2420 images. the operations used for data augmentation are 

horizontal flip, shearing within 0.2 radians in the counterclockwise direction and zooming between 

0.8 and 1.2. First, we train ConVNet using the data in training set to find appropriated filters’ weights 

in the three convolutional sublayers and the weights that yield minimum error in the two fully 

connected layers. Next, we evaluate ConVNet using the data in the validation set to obtain validation 

error and cross-entropy loss. We then train ConVNet again using a new training set created from data 

augmentation of the original 121 training images. We repeat the training of ConVNet in this same 

procedure until we complete 50 epochs. Last, we evaluate the performance of ConVNet using data in 

the test set. 

4. EXPERIMENTAL RESULTS 

To evaluate the performance of our deep learning approach, we compare ConVNet with the dominant 

approach of SVM-GA and two traditional machine learning methods, namely, MLP and random 

forest. Table 5 depicts the accuracy results obtained from these approaches taking ten test sets and 

shows the average with standard deviation over the ten performance estimates. Considering the 

average accuracy, the two traditional approaches cannot achieve the accuracy above 80% while 

ConVNet and SVM-GA yield the average accuracy above 80% and produce comparable results with 

the deference on a very small margin. From the ten set runs, most of the results obtained by both 

ConVNet and SVM-GA are above 80% and have the number approximately ranging from 78–86%. 

 

Fig 3: detection of blood cell 
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Fig 4: Classification of blood cell 

 

Fig 5: Neural network analysis 

 

Fig. 6. Average Precision comparison 

 

Fig. 7. Average Recall comparison 
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Fig. 8. Average F1 score comparison 

Moreover, We conduct another series of experiments, with the attempt to determine the technique for 

the pooling layer: MaxPooling and AveragePooling. For four classes, AveragePooling has better 

performance at some points, e.g., precision of neutrophil classifier, recall of the eosinophil classifier, 

etc. However, comprehensively MaxPooling outperforms AveragePooling. The average 

performance(precision, recall and F1 score) is graphically demonstrated in Figs. 4–6. Referring to two 

classes, they are virtually identical. Finally, to determine the optimal number of epochs for training 

and validation we exhaustively iterate variant number and compute the precision, in Fig. 7. The red 

line indicates the training precision and the blue line is the validation precision. We conclude that 25 

is a good option trade-off between precision and computing time. Our proposed model outperforms 

the traditional machine learning models which can be especially useful in the medical field and this 

proposed model allow to get rid from the blood diagnosis problems. 

5. CONCLUSION 

From the obtained experiments, Our proposed models suggest that implementation of deep learning 

enhance the classification task as compared to state-of-art models. SVM and Naive Bayes has been 

utilized as a baseline to compare with the proposed CNN based model and it compete in all aspects 

with the baseline approaches. Our proposed model can automatically classify the blood cell images 

into subtypes of the cells with high accuracy, precision and other evaluation parameters. This 

proposed model can be greatly beneficial for blood diagnosis in the medical field that can save a lot of 

time. We believe that there is always room for improvement in every field so as well in this field also. 

Researchers may implement this work on large dataset that may outperform the current results 
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