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ABSTRACT : This paper presents a methodology to solve load flow problem, wherein the input 

data are uncertain due to measurement errors. In order to deal with these here the uncertainties, 

interval mathematics (IM) tool has been applied to obtain the interval load flow solution. The data 

arrangement to account for uncertainties, the load and generator data at the buses have been treated 

as interval numbers and subsequently, the interval arithmetic has been used to compute the solution. 

This approach arranges the interval input data and compute interval load flow solution using Interval 

Newton’s method. The proposed method also, compares with known probabilistic method based on 

Monte Carlo simulation for the defined range. This methodology is programmed and successfully 

demonstrated for defined networks having 11and 13 bus ill conditioned and IEEE 30 well-conditioned 

bus system data. 

Keywords: Uncertainty, Power flow, Interval arithmetic, Interval Newton’s method. 

1. INTRODUCTION : 

Load flow calculation is one of the fundamental tools for power system operation analysis 

and planning, by allowing the simulation of the system steady state operation for a specific set of 

generation and load values. The most common approach to solve the load flow problem is the use of 

deterministic values for the input variables.Available conventional methodology does not answer the 

presence of uncertainties in the mathematical modeling of power systems .The consideration of 

uncertainties in the future system operation is a key aspect in current planning methodologies. There 

is a need for tools that incorporate uncertainty in some system variables has been widely recognized 

by researchers focused on system planning. 

Common uncertainties can be categorized as environmental, regulatory and technological. The 

sources of uncertainty happen to be (i) The type of the assumed mathematical model, (ii) 

Representation of various physical components (iii) Values of the parameters may be error (iv) 

Introduction of noise at the inputs and (v) Numerical modeling using finite arithmetic. Qualitative and 

quantitative aspects govern the classification of uncertainties. Qualitative uncertainty is generally 

expressed verbally like ‘near to’, ‘smaller to’ etc., whereas the quantitative uncertainty is quantifiable 

in numerical terms following the Interval arithmetic. Probabilistic methods, Fuzzy logic and Interval 

arithmetic are the ways to determine the solutions to any systems with uncertainty.  

Conventional methodologies available in the literature propose the use of probabilistic methods for 

these type of studies.  Which accounts for the variability and stochastic nature of the input data. In 

particularly, Uncertainty propagation studies based on sample-based methods, such as Monte carlo’s 

require several model runs that sample various combinations of inputs values. Since the number of 

required model runs may be rather large, the needed computation resources for these types of studies 

could be prohibitively expensive. 

Probabilistic methods are useful tool, especially for planning studies. However, as discussed in [1-

2],these present various shortcomings due mainly to non-normal probability distribution and the 
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statistical dependence of the input data, as well as the problems associated with accurately identifying 

probability distribution for some input  data, as in the case  for example of power generated by wind  

or solar generators. These could lead to complex computation that may limit the use of these methods 

in practical applications, especially in the study of large networks. 

The second family of the load flow algorithms incorporating uncertainty has been developed more 

recently and utilized fuzzy sets for its for modelling [3-7]. This is a qualitatively different way of 

expressing uncertainty. It represents impressive, or vargue, knowledge rather than uncertainty related 

to the frequency of occurrence. One inherent advantage of this approach is the ability to easily 

incorporate experts knowledge about the system under study. With this approach, inputs variables are 

represented as fuzzy numbers(FNs), which are special type of fuzzy sets , Although the calculation in 

fuzzy analysis are somewhat simpler than the in a probabilistic case (convolution is not needed), it is 

still far too complex to be applied directly to the full system model. Therefore, again a linearized 

model of the system is used and results obtained are approximate. 

In recent years the uncertain variable in the load flows are being represented using Interval numbers. 

By considering Interval arithmetic the obtained solution for the load flow can be attributed to the 

every punctual or instant value of the problem with uniform validity. This attractive feature of the 

Interval arithmetic made many researchers to put their efforts in solving the uncertain electrical power 

flow problems using Interval arithmetic. The contributions made by Barboza, Zian Wang etc., [8-12] 

are significant in International literature. 

In their contributions Zian Wang and F.L. Alvarado [8] suggested a method for solving the load flow 

using Interval arithmetic taking the uncertainty at the nodal values. It is stated in their article that the 

required solution to the of non-linear equations can be obtained by Interval Newton operator, 

Krawczyk operator or Hansen-Sengupta operator.  In their series of research articles [10-13] Barboza 

and others presented their methodology for solving the uncertain power flow problems. Also in the 

literature Interval mathematics has been applied to the load flow analysis [10-12] by considered 

Krawczyk’s method to solve the non-linear equations. It is mentioned that the existing problem of 

excessive conservatism in solving the Interval linear equations could be overcome by Krawczyk’s 

method. In these methods the linearized power flow equations should be preconditioned by an M-

matrix in order to guarantee convergence.  

In another paper [8] the set of non-linear equations were solved by Gauss-Seidal method.  

Preconditioning is required and no guarantee of convergence if Interval input is too large, hence this 

method cannot give exact solution. 

In the article [15] Fast Decoupled power flow using Interval arithmetic has been used to obtain the 

solution to the power flow with uncertainty.  Linearization is done by Interval gauss elimination 

method.  In particularly the use of the Interval Gauss elimination in the power flow process leads to 

realistic solution bounds only for certain special classes of matrices. This solution show excessive 

conservatism. 

These issues are addressed by proposinga methodology to solve load flow problems in which the load 

data are uncertain due to measurement errors. In order to deal with those uncertainties the application 

of interval arithmetic is proposed. The proposed algorithm uses interval Newton’s method to solve the 

nonlinear system of equations generated. 

2. Interval Newton’s method Under Uncertainty : 

All loads and generator bus data in the electric system are provided by measurement instruments 

which frequently are inaccurate. Moreover, the specified variables like real power at PVbuses also can 

be uncertain since their values are obtained via measurement equipment. This uncertainty in the input 

data can be enlarged due to both rounding and truncating processes that occur in numerical 

computation. As a consequence the actual error presented in the final results cannot be easily 

evaluated. In order to rigorously control and automatically handle these numerical errors. A technique 

of Interval Newton’s method for solving power flow equations using  Interval Arithmetic for a more 

reliable load and generator modelling. 
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Interval Newton’s Power Flow Proposed Algorithm: 

Mathematical Modelling: 

     |  | ∑ |  ||   |    (                ) 
        i = 1, 2,  ….n ----------(1)  

       |  |∑ |  ||   |     (                ) 
   i = 1, 2,  ….n ----------(2) 

Conventional Power flow equations (1) and (2) become interval power flow equations as below by 

introducing uncertainty in the parameters. 

[             ]  [ ̃ ] ∑  [ ̃ ] 
    |Yi  | Cos (      ̃   ̃ )  

                      --------- (3) 

[             ]  [ ̃ ]∑  [ ̃ ] 
    |Yi  | sin (      ̃   ̃ )  

                          --------- (4) 

Where,  is the number of buses 

[         ]  [       ]  [       ]     
 

The interval power flow method essentially means a procedure to find a solution for the following 

interval power equations i.e., solving (3), (4) for [       ] (  PQ buses) and  [       ] (  slack) for 

given [       ] (  slack), [       ] (   PQ buses) and [       ] (  PV buses). 

 ̃i and  ̃i. i.e.   ̃        [       ]    and   ̃       0 [        ]   

It must be noted here that equation (3) and (4) differs from the standard load flow equations in polar 

coordinates. Since the active and reactive power at all the PQ buses and active power and voltage 

magnitude at all the PV buses are intervals. 

Solving interval power flow equations: 

Initialization of iterative process: 

The interval Newton’s method is run after convergence of deterministic or punctual power flow. Its 

initialization is carried out based on deterministic or punctual voltage profile and on definition of load 

variations as follows: 

Note : The real and reactive powers are given by Pisp = Pgi − Pdiand Qisp = Qgi−Qdi, respectively, 

where Pgi and Qgi are the generated real and reactive powers at bus i, and Pdi and Qdiare the real and 

reactive power loads at bus i, respectively. 

Let [           ]     =  [    (   )     (   )]  and  

[           ]  [    (   )     (   )] 
Where Pisp and Qisp are at respective bus i. Obtained from given bus data for the given test system. e 

is the error or percentage of uncertainty.In operation of actual power system, the influence of 

parameter uncertainty of electric lines and transformer factor often small enough to be neglected. 

1. Interval voltages are initialized by using the deterministic or punctual voltage profile as 

midpoint and the largest load data variation factor i.e. uncertain error as radius of interval. 

Thus [       ]     =  [   (   )    (   )]  and    

 [       ]  [   (   )    (   )] 
Where Vio and 𝛿io are obtained from deterministic or punctual load flow in order to ensure a good 

initial condition for convergence of iterative process. 

Calculation of Interval power mismatches: 

2. Compute the elements of the load flow Jacobian matrix (JPolar) at  ̃iand   ̃i. 

3. Calculation of the real (Pical) and reactive power (Qical) at each bus using midpoint value of 

voltage and phase angle using equation (3) and (4), and checking if MVAR of generator buses are 

within the limits, otherwise update the voltage magnitude at these buses by ±5 %.  

Solve the following equations for [       ]  ,[       ] 

[
       
       

]  (      ) [
[       ]

[       ]
]    ---------- (5) 

Where[
       
       

]  [
[                         ]

[                         ]
] 

AndJPolaris the standard [51] load flow Jacobian matrix 
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or[
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where, 
  

  

,   

 | |

,  

  

,   

 | |
are the elements of the standard load flow Jacobian matrix in polar coordinates 

[38,39] and these elements are calculated at  ̃iand   ̃i. 
   

   
= ∑  | ̃ || ̃ ||    | 

   
   

sin (      ̃   ̃ )  

   

 |  |
= 2| ̃ ||   |    (   )  ∑  | ̃ | 

   
   

 |Yi  | cos (      ̃   ̃ )  

   

   

 =    ∑  | ̃ || ̃ | 
   
   

 |Yi  | cos (      ̃   ̃ )  

   

 |  |
 2| ̃ ||   |    (   )  ∑  | ̃ | 

   
   

 |Yi  | sin (      ̃   ̃ )  

In order to solve the above equation (5) i.e. Linear equation can solved as to give Newton’s operator 

[40] refers to the interval Newton’s method. 

Mismatch in voltage and voltage angle can be find out as  

It result iteration in 

 [
[  ( )]

[  ( )]
]= −J (k)

 \ [
[  ( )]

[  ( )]
] 

 

[
[  ( )    ( ) ]

[  ( )    ( ) ]
]= −J (k)

 \ [
[  ( )    ( ) ]

[  ( )    ( ) ]
] 

N ( ̃
 (k)

 , 
(k)

 ) =  ̃
 (k)

  + ∆ 
(k) 

 
 (k)+1)

  = 
(k)

  ∩  N ( ̃
 (k)

 ,  
(k)

 )      --------- (6)
 

N (  ̃(k)
, V

 (k)
) =  ̃(k)

 + ∆V
 (k) 

V
(k)+1)

  = V
(k)

  ∩  N  (  ̃(k)
 ,V

(k)
 )                          --------- (7) 

Where, N (.) is Newton operator. It must be noted here that interval addition and multiplication is 

quite different from the usual addition and multiplication[41]. 

4. After calculating the Newton’s operator, a new interval voltage solution is obtained 

as[       ]  [ ̃       ̃     ]and[       ]  [  ̃        ̃     ]. 

5. To check convergence of the proposed method, the difference between radii at iteration (k + 

1) and radii at iteration (k) is calculated. If the difference is greater than a specified tolerance, denoted 

by  , then interval Newton’s method must be employed to calculate new interval voltages. Otherwise, 

the iterative process is stopped. 

 

3.System studies: 
A power flow program has been written to implement the ideas of interval Newton’s method for 

finding the well-conditioned power system load flow solutions. Extensive numerical simulations have 

been carried out on the 30 IEEE bus well-conditioned systems and 11 IEEE bus and 13 IEEE ill 

conditioned systems , with a convergence accuracy of 10
-3 

on a MVA base of 100 or equivalently 10
-1 

MVA for both power residuals ΔP and ΔQ.  

 

4. Simulation Results : 

Two types of tests were performed:  

Case 1.We consider the uncertainty of load and generator measurement error of on voltage profile at 

all the buses and compare proposed IA method with the punctual mid value. Studied with different 

degree of uncertainty i.e. 10% and 20%. 

Case 2.The analysis of the behaviour of the voltage profile under load and generator is compared with 

a known probabilistic method based on Monte Carlo simulation. Uncertainty of 10% in the load and 

generator value of active and reactive power data was considered 
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Case 1: IEEE – 30 bus system simulation results:  

 

 

 

 
 

Fig .1.  Bus voltage magnitude and voltage angle of Punctual mid value in comparison with Interval 

for IEEE 30 bus system 

Case 2: IEEE – 30 bus system simulation results:  

 
Fig .2.Bus voltage magnitude of Monte Carlo in comparison with Interval for IEEE 30 bus system 

 
Fig.3.Bus voltage angle of Monte Carlo in comparison with Interval for IEEE 30 bus system 

 

4.1 ILL conditioned systems study: 

 In the load flow calculations, we sometimes encounter the same kind of problem, when 

dea1ing with a 1inearized load flow model. 
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This model has the fo1lowing form: 

J Δ x= F   ------------ (8) 

Where J is the load flow Jacobian matrix, Δx is the bus voltage state correction vector, 

F is the power mismatch function vector. 

In some power systems, the load flow Jacobian matrix J in equation (5.8) is very ill-conditioned. This 

causes the instability and or divergence of the load flow solutions. We define this kind of problem as 

an ill-conditioned load flow problem. 

The features which cause the instability and/or divergence in the power systems load flow 

calculations are the following: 

1. Bad choice of the slack bus 

2. Large number of radial lines 

3. Heavily loaded network. 

4. Existence of negative line reactance 

5. Lines with high RIX ratios 

6. Atypical circuit parameters 

The analysis of the behaviour of the voltage profile under load and generator is compared 

with a known probabilistic method based on Monte Carlo simulation. Uncertainty of 10% in the load 

and generator value of active and reactive power data was considered.  

 

IEEE-11 ILL buses system:  

Table 1: Interval complex voltages and Monte Carlo simulation - IEEE-11 ILL bus system 

  
Punctual Interval(I.A) 

Monte Carlo 

simulation(M.C) 

Bu

s 

Ty

pe 

Voltage 

(p.u) 

Phase 

angle 

( ) 

Voltage (p.u) Phase angle( ) 
Voltage 

(p.u) 

Phase angle 

( ) 

1 
Sla

ck 
1.024 0 

[1.0240,    

1.0241] 

[    0.0000,    

0.0000] 

[1.0240,  

1.0240] 
[0,         0] 

2 PV 1.01 -0.232 
[    1.0100,    

1.0101] 

[   -0.2574,   -

0.2084] 

[1.0100,  

1.0100] 

[-0.2492,   -

0.2168] 

3 PQ 1.0088 -0.437 
[    1.0085,    

1.0090] 

[   -0.4825,   -

0.3916] 

[1.0088,  

1.0088] 

[ -0.4641,   -

0.4085] 

4 PV 1.01 -0.385 
[    1.0100,    

1.0101] 

[   -0.4272,   -

0.3443] 

[1.0100,  

1.0100] 

[ -0.4143,   -

0.3581] 

5 PQ 1.0071 -0.534 
[    1.0068,    

1.0075] 

[   -0.5933,   -

0.4753] 

[1.0070,  

1.0072] 

[-0.5741,   -

0.4951] 

6 PQ 1.0099 -0.394 
[    1.0098,    

1.0099] 

[   -0.4370,   -

0.3523] 

[1.0099,  

1.0099] 

[-0.4235,   -

0.3670] 

7 PV 0.99 -1.053 
[    0.9900,    

0.9901] 

[   -1.2683,   -

0.8379] 

[0.9900,  

0.9900] 

[-1.2382,   -

0.8631] 

8 PV 0.99 -3.352 
[    0.9900,    

0.9901] 

[   -3.8149,   -

2.8900] 

[0.9900,  

0.9900] 

[-3.7610,   -

2.9313] 

9 PQ 0.9892 -3.457 
[    0.9890,    

0.9893] 

[   -3.9316,   -

2.9841] 

[0.9891,  

0.9892] 

[-3.8729,   -

3.0265] 

10 PV 0.99 -4.151 
[    0.9900,    

0.9901] 

[   -4.6938,   -

3.6082] 

[0.9900,   

0.9900] 

[-4.6399,   -

3.6545] 

11 PQ 0.988 -4.38 
[    0.9878,    

0.9883] 

[   -4.9551,   -

3.8191] 

[0.9879,  

0.9880] 

[-4.8999,   -

3.8671] 
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IEEE-13 ILL buses system:  

Table 2: Interval complex voltages and Monte Carlo simulation - IEEE-13 ILL bus system 

    Punctual Interval(I.A) Monte Carlo simulation(M.C) 

B

us 
Type 

Volta

ge(p.

u) 

  

Phase 

angle(

 ) 

  

Voltage 

(p.u) 

Phase 

angle( ) 
Voltage (p.u) Phase angle( ) 

1 1 1 0 

[    1.0000,    

1.0000]  

[    0.0000,    

0.0000]  

 [1.0000    

1.0000]  0         0 

2 0 1.006 1.574 

[    1.0061,    

1.0076]  

[    1.3644,    

1.7836]  

    [1.0063    

1.0074] 

    [1.4183,    

1.7370] 

3 0 1.038 2.5211 

[    1.0379,    

1.0391]  

[    2.1574,    

2.8848]  

    [1.0380,    

1.0389] 

    [2.2336,    

2.8070] 

4 0 1.021 2.5674 

[    1.0214,    

1.0219]  

[    2.2046,    

2.9302]  

    [1.0215,    

1.0218] 

    [2.2807,    

2.8526] 

5 2 1 2.6188 

[    1.0000,    

1.0000]  

[    2.2564,    

2.9811]  

    [1.0000,    

1.0000] 

    [2.3324,    

2.9036] 

6 2 1.037 9.8607 

[    1.0370,    

1.0371]  

[    8.5352,   

11.1861]  

    [1.0370,    

1.0370] 

    [8.8759,   

10.8918] 

7 0 1.063 9.0877 

[    1.0626,    

1.0633]  

[    7.8243,   

10.3510]  

    [1.0628,    

1.0632] 

    [8.1247,   

10.0747] 

8 2 1.1 8.2385 

[    1.1000,    

1.1001]  

[    7.0562,    

9.4209]  

    [1.1000,    

1.1000] 

    [7.3041,    

9.1680] 

9 2 0.943 14.3711 

[    0.9430,    

0.9431]  

[   12.4906,   

16.2515]  

    [0.9430,    

0.9430] 

   [12.8023,   

15.9020] 

10 2 1.1 8.3575 

[    1.1000,    

1.1001]  

[    7.0365,    

9.6785]  

    [1.1000,    

1.1000] 

    [7.3085,    

9.3491] 

11 0 1.051 12.0082 

[    1.0409,    

1.0611]  

[   10.2839,   

13.7325]  

    [1.0464,    

1.0577] 

   [10.5942,   

13.3704] 

12 0 1.084 8.2217 

[    1.0840,    

1.0851]  

[    7.0160,    

9.4273]  

       [1.0841,    

1.0849] 

    [7.2704,    

9.1616] 

13 0 1.084 5.4418 

[    1.0730,    

1.0951]  

[    4.6557,    

6.2278]  

        [1.0763,    

1.0893] 

4.576 ,6.04

51] 

 

5. CONCLUSIONS: 

Interval mathematics approach can be easily applied to deal with uncertain input data for power 

flow problems in an efficient manner. On extensive study an idea of the Interval Newton’s method is 

being proposed and tested on standard IEEE –11, 13, 30 ill and well-conditioned bus systems. The 

proposed method has been validated against Monte Carlo simulation.Interval methods have proven 

computationally superior to Monte Carlo simulations. Moreover, in the initial stages of planning load 

flow studies, the proposedmethod is found to be useful tool save on time, effort and resources 

required. 
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