
JOURNAL OF CRITICAL REVIEWS

ISSN-2394-5125 VOL 5, ISSUE 03, 2018

30

Positional Approach for Alphabetic Sort Algorithm

Dr. Sunil Mishra (Cse) 1*, Dr. Yogesh Bhomia (Ec)2, Mr. Ravin Kumar(Cs)3,

Mr. Nawneet Panday (Cs) 4

1 *,2,3,4 Accurate Institute Of Management & Technology, Greater Noida

*Corresponding Author: Dr. Sunil Mishra

*Accurate Institute Of Management & Technology, Greater Noida

Abstract-

 In This paper, the authors present a positional algorithmic approach for alphabetic sort. Results are achieved in linear

time. Within this approach two embedded algorithms, Binary Search and Counting Sort are executed in parallel to achieve

the goal. In this approach a Pre-Processor or Priority Queue is used, which minimizes time complexity. The algorithm is

linear in speed. Time Complexity of this newly proposed algorithm is Θ (n). The interesting feature of this algorithm is

that the order of alphabets is not change and the approach is too much simpler

Keywords- Algorithm, Priority Queue, Sort, Search, Complexity, Analysis.

I. INTRODUCTION

Algorithm is any well-defined computational procedure that takes some value, or set of values, as input and produces

some value, or set of values, as output. An algorithm is thus a sequence of computational steps that transform the

input into the output[1][2]. Algorithm is a tool for solving a well-specified computational problem. The algorithm

describes a specific computational procedure forachieving the input/output relationship [1][2][3][9].

An algorithm is an orderly systematic procedure to solve a problem. The term algorithm is derived from the title

Khowrizmi of ninth-century Persian mathematician Abu Musa al-Khowrizmi, who is credited with systematic study and

development of important algebraic procedures. An algorithm is a sequence of unambiguous instructions for solving a

problem in a finite amount of time.

A large variety of problems in computer science, mathematics and other disciplines depend on the use of algorithms for

their solutions. The broad categories of applications types are:

i. Searching Algorithms (Linear and non-linear)

ii. Sorting Algorithms (Elementary and Advanced)

iii. Strings Processing (Pattern matching, Parsing, Compression, Cryptography)

iv. Optimization Algorithms (Shortest routes, minimum cost)

v. Geometric Algorithms(Triangulation, Convex Hull)

vi. Image Processing (Compression, Matching, Conversion)

vii. Data Mining Algorithms(Clustering, Cleansing, Rules mining)

viii. Mathematical Algorithms (Random number generator, matrix operations, FFT, etc)

II. BINARY SEARCH ALGORITHM

Binary Search is an algorithm for locating the position of an element in a sorted list by checking the middle, eliminating

half of the list from consideration, and then performing the search on the remaining half. If the middle element is equal

to the sought value, then the position has been found; otherwise, the upper half or lower half is chosen for search based

on whether the element is greater than or less than the middle element. The method reduces the number of elements

needed to be checked by a factor of two each time, and finds the target value, if it exists in logarithmic time. A binary

search is a divide and conquer search algorithm. [1][3][9][4][5].

Pseudo Code for Binary Search Algorithm BINARY-SEARCH

i. start = 1; end = n ;

ii. while (start < end)

iii. {

iv. middle = (start + end) / 2 ;

v. if s > a middle then start = middle + 1 ;

vi. else end = middle – 1 ;

vii. }

viii. if (s == a start) location = start ;

ix. else location = 0;

JOURNAL OF CRITICAL REVIEWS

ISSN-2394-5125 VOL 5, ISSUE 03, 2018

31

Time & Space Complexities of Binary Search Algorithm: [3][4][5]

Worst case performance = O (log n) Best case performance = O (1)

Average case performance = O (log n) Worst case space complexity = O (1)

III.COUNTING SORT ALGORITHM

Counting Sort (sometimes referred to as Ultra Sort or Math Sort) is a sorting algorithm, which takes advantage of knowing

the range of the numbers in the array to be sorted (array A). It uses this range to create an array C of this length. Each

index i in array C is then used to count how many elements in A have the value i; then counts stored in C can then be

used to put the elements in A into their right position in the resulting sorted array. The algorithm was created by Harold

H. Seward [1][3][6].

Pseudo Code for Counting Sort Algorithm: COUNTING -SORT (A)

i. n=length[A]

ii. for j← 0 to n do

iii. C[j]← 0

iv. for j ← 1 to n do

v. k← A[j]

vi. C[k]← C[k] +1

vii. for j ← 1 to n do

viii. C[j]← C[j] + C[j-1]

ix. for j ← n downto 1 do

x. i ← A[j]

xi. k← C[i]

xii. B[k]← A[j]

xiii. C[i] ← C[i]-1

xiv. return B

Time & Space Complexities of Counting Sort: [5][6][1] Worst case performance = O (n + k) Best case performance =

O (n + k) Average case performance = O (n + k) Worst case space complexity = Θ (n + k)

IV. PROPOSED ALPHABETIC SORTALGORITHM

The proposed algorithm uses two arrays named as array A and array B. Array A is an input array while as Array B is a

Pre-Processed array or Priority Queue. In the whole process two well-known algorithms, Binary Search and Counting

Sort are used in parallel. The Binary Search algorithm is used for searching the corresponding positions while as Counting

Sort algorithm is used for sorting purposes.

Steps involved in the proposed alphabetic sort algorithm.

i. Comparison is made between array A and pre- processed array B for searching the corresponding positions of

alphabets in Priority Queue B. For this purpose Binary search algorithm is used.

ii. Substituting the alphabets in array A with corresponding positional digits.

iii. For sorting array A, Counting Sort algorithm is used.

iv. Again fetching corresponding elements of the positional digits held in Array A from Priority Queue B. So Binary

Search algorithm is used.

v. Replacing the digits in the array A by the fetched elements.

V. GRAPHICAL DEPICTION OF THE PROPOSED ALGORITHM

Take alphabet from array A, fetch its corresponding location/position from Priority Queue B and then replace alphabet in

array A by this fetched positional digit.

Now sort this array A by using sorting algorithm. The sorted array will be as,

JOURNAL OF CRITICAL REVIEWS

ISSN-2394-5125 VOL 5, ISSUE 03, 2018

32

Now again fetch corresponding elements of these new positional digits held in Array A from Priority Queue B. Replace

the digits in this updated array A by the fetched elements. Now the array A will be as,

Sorted alphabets list.

Here a pre-processor is also introduced, due to which time complexity is minimized.

VI. ANALYSIS OF THE PROPOSED ALGORITHM

For the whole process twice Binary Search algorithm, once sorting algorithm and twice substitution is used.Time

Complexity of the proposed algorithm is,T(n) = Θ (lg n) + Θ (lg n) + Θ (n) = Θ (n) (Ignoring constant terms & values)

The logarithm (lg n) has lower growth rate and exponential function nn has the highest growth rate.The symbolic

representation of the relationship of functions growth rates is,

Therefore, Time Complexity of the proposed algorithm is Θ (n), Linear Time Complexity.

VII. CONCLUSION

The linear Time Complexity T(n) = Θ (n) is achieved by this algorithm. The flavor of this newly proposed algorithm is

its speed and simplicity. The interesting feature here is that the order of alphabets is not changed.

VIII. REFERENCES

1. Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford, Introduction to Algorithms (3rd

ed.), MIT Press.

2. A.Levitin, Introduction to Design and Analysis of Algorithms, Pearson Edition, 2006.

3. R.E.Neapolitan, K.Naimipour, Fundamentals of Algorithms, Heath and Company.

4. http://mathworld.wolfram.com/ BinarySearch.html , 2009.

5. http://en.wikipedia.org/wiki/ Binary_search_ algorithm , 2009.

6. Anthony Ralston, Edwin D. Reilly, David Hemmendinger, ed (2003). "Ultrasort". Encyclopedia of Computer

Science (4th ed.). Wiley. pp. 1660-1661.

7. http://www.shannarasite.org/, 2009

8. D.F. Stubbs and N.W. Webre, Data Structures with Abstract Data Type and Ada, PWS- KENT Publishing

Company, pp.301-341, 1993.

9. S.Basse, V.A.Gelder, Computer Algorithms, Pearson Edition Inc.

http://mathworld.wolfram.com/
http://en.wikipedia.org/wiki/
http://www.shannarasite.org/

	Positional Approach for Alphabetic Sort Algorithm
	Dr. Sunil Mishra (Cse) 1*, Dr. Yogesh Bhomia (Ec)2, Mr. Ravin Kumar(Cs)3,
	Mr. Nawneet Panday (Cs) 4
	1 *,2,3,4 Accurate Institute Of Management & Technology, Greater Noida
	*Corresponding Author: Dr. Sunil Mishra
	*Accurate Institute Of Management & Technology, Greater Noida

