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ABSTRACT: The subject of fractional calculus has emerged as a powerful and efficient mathematical 

instrument during the past six decades, mainly due to its demonstrated applications in numerous seemingly 

diverse and widespread fields of science and engineering.  Although researchers have already reported many 

excellent results inseveral seminal monographs and review articles, there arestill alarge number of non-local 

phenomena unexplored and waiting to be discovered. In this perspective, this paper investigates the use of 

Fractional Calculus in the fields of Physics, Mechanics, Biology, Engineering and Signal Processing. We hope 

this incomplete, but significant, details will guide young researchers and help new comers to see some of the 

important applications. We expect this collection of review will also benefit our society. 

 

KEYWORDS: Fractional Calculus, Sinc-Fractional Derivative, Electrical spectroscopy impedance, 

Newtonian Mechanics, Bio Heat Transfer Equation, HexapodRobot. 

I. INTRODUCTION 

 

Fractional calculus was formulated in 1695, shortly after the development of classical calculus. Fractional 

calculus is deeply related to the dynamics of complicated real-world problems. Many mathematical models are 

accurately governed by fractional order differential equationsThe earliest systematic studies were attributed to 

Liouville, Riemann, Leibniz, etc. [45, 56]. For a long time, fractional calculus has been regarded as a pure 

mathematical realm without real applications. But, in recent decades, such a state of affairs has been changed. It 

has been found that fractional calculus can be useful and even powerful, and an outline of the simple history 

about fractional calculus, especially with applications, can be found in Machado et al. [32]. Now, fractional 

calculus and its applications is undergoing rapid developments with more and more convincing applications in 

the real world [27,46].Research in fractional differentiation and integration is inherently multi-disciplinary and 

its application is done in various contexts: continuum mechanics, elasticity, signal analysis, quantum mechanics, 

bioengineering, biomedicine, financial systems, social systems, pollution control, turbulence, population growth 

and dispersal, landscape evolution, medical imaging, and complex systems, and some other branches of pure 

and applied mathematics. This review is organized into 7 sections. We begin with some important results of 

Fractional Calculus in physics, Mechanics, Biology, Engineering, Control and Signal Processing. 

 

II. APPLICATION OF FRACTIONAL CALCULUS IN PHYSICS 

A branch of theoretical physics which has been attracting considerable attention in the last years is quantum 

gravity. Several independent theories, models and hypotheses are gathered under this broad name, from string 

theory to asymptotic safety, from non-local to loop quantum gravity, from causal dynamical triangulations to 

causal sets, and so on [46,15,10, 37]. Since then, eminent mathematicians such as Fourier, Abel, Liouville, 

Riemann, Weyl, Riesz, and many others contributed to the field, but until later days Fractional Calculus has 

played a negligible role in physics. However, in recent years, applications of fractional calculus in physics have 

become more common in fields ranging from classical and quantum mechanics, nuclear physics, hadron 

spectroscopy, and up to quantum field theory. In theoretical  physics we can study the fractional equivalent of 

many standard physics equations: frictional forces, harmonic oscillator, wave equations, Schr¨odinger and Dirac 

equations, and several others. In applied physics, various methods of fractional calculus can be used in the 

description of chaotic systems and random walk problems, in polymer material science, in biophysics, and other 

fields. 
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2.1 Fractional calculus technique in random optimal search 

One common approach to the animal movement patterns is to use the scheme of optimizing random search 

[6,65,54]. In a random search model, single or multiple individuals search a landscape to find targets whose 

locations are not known a priori, which is usually adopted to describe the scenario of animals foraging for food, 

prey or resources. Many researchers have concentrated on the study of different animals‟ foraging movements. It 

is shown that when the environment contains a high density of food items, foragers tend to adopt Brownian 

walks, characterized by a great number of short step lengths in random directions that maintain foragers in a 

small portion of the available space [5,21]. In contrast, when the density of food items is low, individuals tend to 

exhibit Lévy flights, where larger step lengths occasionally occur and relocate the foragers in the environment. 

Due to the fact that the density of food items is often low, many animals behave a Lévy flight when foraging and 

their movements have been found to fit closely to a Lévy distribution (power law distribution) with an exponent 

close to 2 [66,67]. For instance, the foraging behavior of the wandering albatross on the ocean surface was 

found to obey a power law distribution [68]; the foraging patterns of a free-ranging spider monkey in the forests 

was also found to be a power law tailed distribution of steps consistent with Lévy walks [9,52]. 

 

2.2 Sinc-Fractional Derivative on Shannon wavelets 

The sinc-fractional operator will be generalized in order to compute the fractional derivative of the L2(R)-

functions belonging to the Hilbert space defined by the Shannon wavelet. In doing so, we will be able to 

compute the fractional derivative of these functions by knowing only their wavelet coefficients. Moreover, with 

this approach we will be able to decompose the fractional derivative at different scales, thus showing the 

influence of a given scale in multi scale physical problems. Sinc function is playing a fundamental role in 

mathematics and physics. Due to the many properties of this function it deserves a special role in applications. 

In recent years some authors have proposed [69] a fractional derivative based on this function.  

 

2.3 Linear visco elastic response functions and the Caputo-Fabrizio fractional operator 

The deep physics behind the fractional operator with exponential kernel  motivated this study and the efforts are 

oriented to show that the existing knowledge and models, as well as techniques of data treatment, in the 

framework of linear visco elasticity, lead naturally to formulation of the Caputo-Fabrizio fractional operator. 

This is in the context of the Sir Isaac Newton quote at the beginning of the article: the steps ahead on the 

shoulder of existing facts and results on the road to creations of new information are natural ways and actually 

the exciting moments in the beautiful journey in the world of science. It was demonstrated that in many cases 

there are viscoelastic materials which experimental behaviors exhibit strong departures from the power-law 

.  

2.4 Fractional Calculus and Electrical spectro scopy impedance 

The electrical spectroscopy impedance technique plays an important role from the experimental 

point of view to obtain information about the electrical properties of many different materials, in 

particular, of liquids [4]. It has been investigated, from the theoretical point of view, by using the 

Poisson–Nernst–Planck diffusion model [26] and/or equivalent circuits. In the low frequency 

limit, these approaches with simple considerations (boundary conditions and/or circuit elements) 

are not able to describe the experimental behavior. However, by using the well-established 

features of the fractional calculus and performing suitable changes in the boundary conditions, in 

order to account the surface effects, it is possible to overcome this issue and describe the 

experimental behavior in all frequency range[12,25].  Furthermore, this approach can also be 

used to investigate the ion diffusion in an electrolytic cell through the electrical conductivity, 

which is directly related to the mean square displacement.  

 

III. APPLICATION OF FRACTIONAL CALCULUS IN MECHANICS 

The use of real order derivatives has been found to be very useful in many practical applications. On the other 

hand, the studies of applications using derivatives of complex number order are still quite rare. However, there 

are some application areas in which complex order derivatives have been adapted to engineering mechanics, 

such as continuum mechanics and the modelling of viscoelastic materials [34,2] 

 . 

3.1 Fractional Calculus and Newtonian Mechanics 

One-dimensional Newtonian mechanics for a point-particle of constant mass m is based upon Newton‟s second 

law of motion, a second-order ordinary differential equation: 

   ( )

   
  
 

 
                                           ( )    

We can easily think of at least two possible ways of generalizing Newton‟s second law using fractional calculus: 

• Change the order of the time derivative in the left-hand-side of Eq. (1) to an arbitrary number q. • Generalize 
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the expression of the force (or force field) F on the right-hand-side of  Eq. (1) to include differintegrals of 

arbitrary order q. This is also routinely done in applications of FC to physics by selecting fractional 

generalizations of standard electromagnetic potentials, in order to analyze phenomena in nuclear physics, hadron 

spectroscopy, and other fields 

 

3.2 Fractional calculus for modeling oil pressure 

Darcy‟s law is used to relate fluid motion to pressure and gravitational gradients. The combination of the 

Continuity Equation and Darcy‟s Law leads to a heat-conducting differential equation in mathematical physics 

describing the transfer of the fluid. The application of the fractional calculus can be very useful for the modeling 

of anomalous diffusion phenomena in which the fractal structure better reflects the real conditions of the  

medium, as it is the case of the reservoirs in which because of its very nature it is difficult to find a structure 

Euclidian. 

 

3.3 Micro flows of visco elastic fluids with fractional constitutive relationships 

Recently the microflows of viscoelastic fluids have been studied extensively due to their 

importance in microfluidic systems. However, the application of fractional constitutive models in 

microchannel flow is still in early stages. Considering the successful applications of fractional 

constitutive models in the description of viscoelastic materials, the mechanics models to study the 

electro osmotic slip flows of viscoelastic fluids under the mixed influence of electro osmosis and 

pressure gradient forcing.  

 

3.4 Unsteady flow towards subsurfacedrains 

Glover–Dumm equation (GDE), which is the most practical mathematical model to simulate 

water table profile between two parallel drainpipes under unsteady flow conditions, was obtained 

by analytically solving Boussinesq equation (BE). Fractional derivatives, because of having non-

locality property, can reduce the scale effects on the parameters and, consequently, better 

simulate the hydro-geological processes. Hereby a fractional BE (FBE) was proposed and 

analytically solved for one-dimensional unsteady flow towards parallel subsurface drains. The 

applicability and accuracy of the resultant solution, called fractional Glover–Dumm equation 

(FGDE), were examined using both laboratory and field data measured at an experimental farm in 

Abadan, Iran. 

 

IV. APPLICATION OF FRACTIONAL CALCULUS IN BIOLOGY 

Fractional calculus provides novel mathematical tools for modeling physical and biological processes. The 

bioheat equation is often used as a first order model of heat transfer in biological systems. Formulation of bio 

heat transfer in one dimension in terms of fractional order differentiation with respect to time can be described. 

In the future we hope to interpret the physical basis of fractional derivatives using Constructal Theory, 

according to which, the geometry biological structures evolve as a result of the optimization process. 

 

4.1 Bio Heat Transfer Equation 

The methods of fractional calculus, reviewed recently by Magin [33], are developed as the basis for formulation 

and solution of the bio heat transfer problem in peripheral tissue regions. Investigators have studied bio heat 

transfer using mathematical models for more than 50 years [70,59,16]. In these models tissue cooling (or 

warming) is approximated by coupling tissue perfusion to the bulk tissue temperature through Newton‟s law of 

cooling (or heating). In addition to full body models, there are numerous models in literature Design and Nature 

II, M. W. Collins & C. A. Brebbia (Editors) © 2004 WIT Press, www.witpress.com, ISBN 1-85312-721-3 that 

describe heat transfer mechanisms in a single organ or a portion of the body. In this regard, an analytical model 

developed by Keller and Seiler examines bioheat transport phenomena with heat generation (metabolism) 

occurring in the peripheral tissue regions. The Keller and Seiler [20] model was solved numerically using 

parallel computers to simulate all possible modes of bioheat transfer by Boregowda et al. [8]. Recently a number 

of investigators [14,1,29] have applied the bioheat transfer model to periodic diffusion problems in localized 

tissue regions such as that which occurs in the skin when laser heating and/or cryogen cooling is applied. 

Fractional calculus is ideally suited to address this kind of periodic heating or cooling, but to our knowledge has 

not been used in modeling bio heat transfer either at the tissue, organ or whole body level. The study 

demonstrates that fractional calculus can provide a unified approach to examine periodic heat transfer in 

peripheral tissue regions. For example, in an experimental study conducted by Pikkula et al. [48], cryogen spray 

cooling is utilized to cool the skin surface during the laser skin surgery. A generalized fractional calculus 

approach developed by Kulish and Lage [23,24] is adopted to model the localized periodic bioheat transfer 

problems similar to the one posed by Pikkula et al. [48]. The one-dimensional heat flow problem can be 

completely solved for well defined surface temperature or thermal flux boundary conditions by applying 
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Laplace transforms [7,49]. The solution can also be expressed as a fractional differential equation for the semi-

infinite peripheral tissue region [23]. Further, the fractional differential equation can be solved to compute the 

heat flux at the boundary for different periodic or on-off boundary conditions that closely represent the heating 

and cooling of skin surface during laser surgery. The approach offered by fractional calculus models a large 

class of biomedical problems that involve localized pulse heating and/or cooling. One advantage of this 

approach is that there is no need to solve first for the temperature in the entire domain. 

 

4.2 Models of bone remodeling and bone tumors using variable order derivatives 

Bone tissue is not static. Like every other part of our body, its cells are always dying and being 

replaced. The main actors of this process are the cells destroying bone tissue, called osteoclasts, 

and the cells that build bone back, called osteoblasts. The presence of osteoblasts influences the 

rate of increase of osteoclasts and the number of osteoclasts also influences their own evolution. 

The changes in dynamic behavior when there is a tumor can be modeled by tuning the parameters 

of au- tocrine and paracrine effects. Models found in the literature include intricate mathematical 

expressions for such variations.Our research has shown that the same effect can be obtained 

merely changing the order of the time derivative in the partial differential equations that model 

the involved diffusion phenomena. We studied the dynamic behavior of the resulting vari- able 

order partial differential equations and found in accord with the known qualitative behavior of 

healthy and tumorousbone remodeling.  

 

V. APPLICATION OF FRACTIONAL CALCULUS IN ENGINEERING 

Recently Fractional Calculus has been a fruitful field of research in science and engineering and many scientific 

areas are currently paying wider attention to the Fractional Calculus concepts. In the field   of dynamical 

systems theory, some work has been carried out but the proposed models and algorithms are still in a preliminary 

stage of establishment. This leads several case studies on the implementation of Fractional Calculus-based 

models, being demonstrated the advantages of using the Fractional Calculus theory in different areas of science 

and engineering 

 

5.1 Tuning of PID Controllers Using Fractional Calculus Concepts 

The PID controllers are the most commonly used control algorithms in industry. Among the various existent 

schemes for tuning PID controllers, the Ziegler-Nichols (Z-N) method is the most popular and is still 

extensively used for the determination of the PID parameters. It is well known that the compensated systems, 

with controllers tuned by this method, have generally a step response with a high percent overshoot. Moreover, 

the Z-N heuristics are only suitable for plants with monotonic stepresponse. 

 

PIDcontroller Plant 

 

 
 

Figure 1: Closed-loop control system with PID controller Gc(s). 

 

5.2 Fractional PD
α
Control of a HexapodRobot 

Figure 2 presents the dynamic model for the hexapod body and foot-ground interaction. It is considered robot 

body compliance because walking animals have a spine that allows supporting the locomotion with improved 

stability. The robot body is divided in n identical segments (each with mass Mbn
−1

) and a linear spring-damper 

system  is adopted to implement the intra body compliance [58]. The contact of the i th robot feet with the 

ground is modelled through a nonlinear system [57], being the values for the parameters based on the studies of 

soil mechanics[57]. 

 

 

 

R(s) + E(s) 

− 

U(s) Y(s) 
 

Gp(s) 

 

Gc(s) 
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Figure 2: Model of the robot body and foot-ground interaction. 

 

It is analysed the system performance of the different PD
α
tuning, during a periodic wave gait at a constant 

forward velocity VF, for two cases: two leg joints are motor actuated and the ankle joint is mechanical actuated 

and the three leg joints are fully motor actuated [58]. 

 

5.3 Heat Diffusion 

The heat diffusion is governed by a linear one-dimensional partial differential equation (PDE) of the form: 
  

  
  

   

   
                                                           (2) 

where k is the diffusivity, t is the time, u is the temperature, and x is the space coordinate. However, (2) 

involves the solution of a PDE of parabolic type for which the standard theory guarantees the existence of 

a unique solution[31].For the case of a planar perfectly isolated surface we usually apply a constant 

temperature U0atx= 0 and analyzes the heat diffusion along the horizontal co ordinate x. 

 

5.4 Circuit Synthesis Using Evolutionary Algorithms 

In recent decades evolutionary computation (EC) techniques have been applied to the design of electronic 

circuits and systems, leading to a novel area of research called Evolutionary Electronics (EE) or Evolvable 

Hardware. Several papers proposed designing combinational logic circuits using evolutionary algorithms and, in 

particular,  genetic algorithms (GAs) [30, 18] and hybrid schemes such   as the memetic algorithms (MAs)[18]. 

 

VI. APPLICATION OF FRACTIONAL CALCULUS IN CONTROL 

6.1 Application of D-decomposition technique in solving some controlproblems 

The basic idea of D-decomposition technique, conceived by the Russian scientist Neimark during 

the 1950s, is now extended for the case of linear fractional order systems and gives powerful tool 

for the analysis of systems stability and performance. In order to control as many different 

processes as possible, a fractional order proportional-integral-derivative (PID) controller is 

introduced, as a generalization of classical PID controller. Another useful application of this 

technique is control of underactuated systems. The D-decomposition method can be successfully 

used to solve a problem of asymptotic stability of inverted pendulum systems controlled by a 

fractional order controller[35,36]. 

 

6.2 The application of fractional order control for anair-based precision positioning system 

Precision, bandwidth (speed) and stability of motion are the most important performance indexes 

of any motion system. Fractional order PID has proven to be very effective to improve the 

performance. A recent work at TU Delft [55], utilizes the fractional order calculus to control a 

precision positioning stage. In this work, a contactless precision positioning system is designed 

by floating a silicon wafer on a thin film of air (see Fig. 3(a)). The system has been controlled as 

shown in Fig. 3(b) in which two cascade single-input/single-output (SISO) controllers are 

designed. By using only the fractionality, the bandwidths are extended by 14.6%  and 62%, for 

the inner and outer loops, respectively. Furthermore, a closed-loop positioning bandwidth of the 

wafer   of 60 Hz is achieved, resulting in a positioning error of 104 nm, which is limited by sensor 

noise and pressure disturbances. (ContributedbyS.HassanHosseinNia,Fractionalordercontrol). 
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Fig. 3.  (a) Overview of the air based precision positioning stage (so called the 

Flowerbed) designed at TU Delft. (b) Proposed Control Strategy, with an     

InnerLoopController(ILC)andanOuterLoopController(OLC). 

 

 

VII. APPLICATION OF FRACTIONAL CALCULUS IN SIGNAL AND IMAGE PROCESSING 

7.1 Astudyonfractionalcalculusapplicationsinimageprocessing 

Employing fractional differential to image processing is a prospering subject branch under 

discourse [55,19,72,73]. Recently, fractional calculus has been significantly examined in 

computer vision [11,74]. The principle purpose behind this advancement is the desire that the 

utilization of this theory will prompt a considerably more exquisite and viable method to treat 

problems of blocky effect and detail information protection. The fractional- order derivative 

operator has a non-local behavior because the fractional-order derivative at a point relies upon the 

characteristics of the entire function and not just the values in the vicinity of the point, which is 

helpful to enhance the performance of texture preservation. The numerical outcomes in published 

works show that the fractional-order derivative performs we eliminating the stair  case effect and 

preserving textures[74].It has been demonstrated in [50] that the fractional-order derivative 

fulfills the lateral inhibition principle of  thebiological visual system better than the integer -order 

derivative. Pu et al. [51] considered the kinetic physical meaning ofthe fractional-order derivative 

and demonstrated that fractional differential-based methods can protect the low-frequency 

contour features in those smooth areas, and non-linearly keep high-frequency marginal feature in 

those regions where gray-level changes significantly, and furthermore preserve texture details in 

those areas that gray-level does not change obviously.It is noted in [75] that for low-frequency 

signal, fractional differential lessens the signal not  as  much  as  the integerone and for high-

frequency one, fractional differential improves signal not as much as the integer one. Hence, we 

get the conclusion that fractional differential can upgrade the high-frequency signals, and 

reinforce the medium frequency one,while non-linear retain the low-frequency one.  

 

7.2 Application of the GPCF and DGIs for improving the resolution and quality of nano images 

We apply the generalized Pearson correlation function (GPCF) [38] POLS [41] and discrete 

geometrical invariants (DGI) for improving the quality and sharpness of nanoimages in the range 

of resolution (10–1000) nm. The GPCF helps to compare one piece of image with another one 

and the procedure of reduction to three incident points [42] allows finding “hidden” self-similar 

objects. The DGI based on the generalization of the Pythagoras theorem obtained by Babenko[3] 

allows comparing two randomly taken parts of images with each other and finding distinct 

differences expressed in terms of the integer moments. The quantitative parameters determined 

by the DGIs of the second and fourth orders, correspondingly allow monitoring the 

dynamics/changings of the chosen image in time. It can be applied for a wide set of random 

curves (experimental measurements) that are needed to be compared in terms of a limited number 

of the integer moments.  

 

7.3 NAFAS Sinaction: intermediate fractal model for the fitting of complex systems data 

We essentially modernize the NAFASS (Non-orthogonal Amplitude Frequency Analysis of the 

Smoothed Signals) approach suggested earlier [43,44]. The NAFASS opens an alternative way for 

creationofnewfluctuationspectroscopywhenthesegment of the Fourier series can fit any random signal 

with trend. However, the dispersion spectrum of the Fourier series 

    (        )    (               ) 
is replaced by the specific dispersion law    calculated by the original algorithm. It implies that any 

finite  signal  will  have  a  compact  amplitude-frequency  response  (AFR),  where  the  number  of 

the modes is much less in comparison with the number of data points (K N). The NAFASS approach 
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can be applicable for quantitative description of a wide set of random signals/fluctuations and allows 

one to compare them with each other based on one general  platform.  We  combine  also  the  

NAFASS  with  generalized  Pearson  correlation  function  [38, 40]  that  allows to apply this  

combination  for  analysis  of  signals  having  self-similar  origin  with  their  subsequent  fitting.   

 

VIII. CONCLUSION 

 

In recent years Fractional Calculus has been a fruitful field of research in science and engineering. In fact, many 

scientific areas are currently paying attention to the Fractional Calculus concepts and  we can refer its adoption 

in viscoelasticity and damping, diffusion and wave propagation, electromagnetism, chaos and fractals, heat 

transfer, biology, electronics, signal processing, robotics, system identification, traffic systems, genetic 

algorithms, percolation, modeling and identification, telecommunications, chemistry, irreversibility, physics, 

control systems as well as economy, and finance.The applications of fractional derivatives in condition 

monitoring and some of the above fields were discussed in this paper. We try our best to organize this Theme 

Issue in order to offer fresh stimuli for the fractional calculus community to further promote and develop 

cutting-edge research on fractional calculus and its applications. This survey cannot be considered as a complete 

one, but as a collection of sample applications, which can be used for further developments using analogies in 

the mathematical description of real problems arising in different fields of science. 
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