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Abstract 

Ultrafiltration (UF) is a pressure-driven membrane separation process that has transformed a banking-key technology 

throughout the industrial sectors achieving liquid solution fractions purification. Recombinant Protein Through Membrane 

Technology, Higher Efficiency, More FLux, Greater Application: Developments in membrane materials, bioreactor 

designs, and process engineering have extended the scope of UF (ultrafiltration) by improving its efficiency, flux rates, 

and application fields. During the last years, different classes of polymers (polymeric membranes) and ceramics (ceramic 

membranes), which have distinctive attributes in comparison to each other, have been adopted as separation materials. 

Composite polymer-ceramic membranes intended to exploit the 2-way interaction of their benefits. The barrier 

characteristics of transport such as pore size distribution, surface roughness, and chemical resistance play a role and affect 

both flux and separation efficiency. No waste or kind of it is irrelevant to the spheres of food, pharmaceutical, or industrial 

wastewater treatment industries, those are clarification, concentration and purification applications. Nonetheless, issues 

arise concerning the efficient mechanism of cleaning which requires more innovative developments. Coming technology 

is devoted to addressing the design of modules and the surface modification of membranes which will subsequently result 

in an enhanced fouling resistance. 
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I. Introduction 

Ultrafiltration (UF) stands as one of the mechanical and membrane separation processes that has grown to be a critical 

technology for separated and purified liquid phases in most industrial sectors within a short time [1]. UF membrane is 

characterized by pore sizes of 1-100 nm (small pores) which allow passage of water molecules and other low molecular 

weight solutes, while effectively retaining macromolecules, colloids, proteins, particles, bacteria and viruses [2,3]. 

Micrometry which is the step that is superior to microfiltration produces membranes with smaller pores (above 100 nm). 

Therefore, UF ensures better separation efficiency for solutions that contain solutes in the molecular weight range that is 

equal to and smaller than 103 to 106 g/mol [4]. In contrast to the case of nanofiltration and reverse osmosis which use 

tighter membranes that are operated at higher pressures, UF has the major advantages of lower energy consumed and 

operating costs [5]. 

The most popular polymer and ceramic membranes are used most often UF [2]. Polymers in UF membranes are cellulose 

acetate, polysulfone polysulfone polyethersulfone or polychlorotrifluoroethylene. Although ceramic UF membranes are 

produced using metal oxides alumina, titania and zirconia in addition, they can be stabilized with aluminum oxide the 

cerium oxide nanoparticles [6]. The UF method varies depending on the configuration, so it can be used in flat sheet, 

tubular, capillary/hollow fiber and spiral wound modules [7]. Under the influence of technological development, scientists 

have come up with new UF membrane materials, that have selective properties, increased permeability, repelling and 

mechanical toughness for grimy industrial applications [8]. 

Due to the selective separation property of UF, the field is gaining wider application in biopharmaceuticals, food and 

beverages, and water and wastewater treatment, among others [9]. In biotechnology, ultrafiltration or UF is being used for 

different stages of the purification and concentration of proteins such as antibodies, vaccines, enzymes, and amino acids 

[10]. The UF method is widely used for food and beverage applications; it allows combined concentration, clarification 

and pasteurization of milk, juices, wines and plant extracts [11]. While UF is increasingly being seen as a pre-treatment 

step for membrane-based desalination processes, it is important to note that many factors can affect the efficiency of the 

process [ 5]. 

Furthermore, UF membranes have a pivotal part to play in the production of safe drinking water as well as wastewater 

reuse by removing turbidity, pathogens, viruses and undesirable micropollutants [12], [13]. These results lead to the growth 

of the global UF market in which the industrialists’ expansions and the regulations for water quality improvement get 

stricter in the coming years. The demand for UF systems has outgrown the industry’s capabilities over time and therefore, 

spurred the researchers to find new solutions through innovations in materials, membrane fabrication process, and process 

intensification to advance the current technology. 
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Though a few reviews are available on UF membranes with many others that are focused on theoretical aspects or certain 

applications, the existing research niche still presents an opportunity. Due to impressive progress being made, there is a 

need to conduct a systematic review to assess the latest developments and highlight the areas where improvement is 

required in the case of UF membrane technology. As such, the goal of this statistic review is to show how UF membranes 

have come back into fashion by giving an objective analysis and future outlook of the latest research findings. The project's 

scope includes plain UF and advanced membrane synthesis routes, novel membrane materials, module fabrications, 

performance studies and applications in the last decade. Furthermore, we have furnished a quantitative-statistical 

assessment of research themes, regional contributions, and institutional productivity which all are objectively supported. 

Also, these features are used to identify the global revival of UF membrane research and to define directions for future 

sustainable development of this technology. 

 

2. Historical Development of UF Technology 

Ultrafiltration (UF) is a pressure-driven membrane filtration process that involves the separation of solutes from fluids 

using a semipermeable membrane. In this process the membrane pore size ranges from 1 to 100 nm [16]. UF membranes 

do the job of strain-away of colloids and macromolecules, bacteria, and, viruses, but the water and low molecular weight 

solutes are let through [17]. The historical progression of UF technology can be summarized in three main areas: seed 

stages and baby steps, exploration of UF membrane material development, and highlighting the core innovations in the 

UF processes. 

 
Figure 1. Evolution of UF Membrane Materials [18] 

 

Initial works dealing with this topic became known already in the 18th century when experiments with membranes based 

on animal bladders were thought to be helpful [19] in Figure 1. Meanwhile, CA membranes with asymmetric structures 

are considered milestones in primitive UF membranes due to Loeb and Sourirajan’s invention in 1960 [20]. This 

innovation was the result of their creation of polymer solutions that were cast in two layers symmetrically on top of each 

other to form an asymmetric membrane with a permeability that was more improved than that of the symmetric membrane 

[21]. Since 1970, vast improvements in the CA casting process for the membranes allowed the operators to employ the 

first industrial-scale UF for wastewater treatment and protein concentration [22]. Still, the 1970s and 80s brought some 

other UF milestones, like the commercialization of PAN and PS UF membranes, which have better chemical resistance 

compared to CA membranes. 

The goal of the advancement of UF membrane materials is to improve the selectivity, chemical-thermal stability, and 

antifouling properties, as well as efficiency. Earlier, membranes were prepared from cellulosic materials like CA which 

had a very low permeability leading to low chemical and temperature resistance [18]. PAN and PS membranes, by allowing 

work at harsher environments and higher temperatures [19], have expanded the application area of gas separation and 

recovery for process industries. Since the 1990s forward the TFC membranes deployed for filtration purposes from 

polymeric and ceramic materials commingled together have taken over the market [20]. Such tunnels-fining of the top 

layer with polyamide ultrafiltration (UF) membrane on porous polysulfone supports has increased the UF membrane 

permeability compared to asymmetric membranes [16].  
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Researchers have likewise made strides in bioreactor designs, as well as in the process engineering of UF. The grand 

majority of the early UF systems used the dead-end diffusion model which was associated with several problems including 

concentration polarization and membrane fouling . In the 1980s when crossflow filtering was introduced, the limits of the 

batch mode were overcome to an extent making it possible for designers to design continuous UF systems [23]. Crossflow 

UF coupled with plenty of turbulence promoters, periodic pulsations, and optimized module designs, a process having 

very high values of efficacies and flux rates were obtained [24]. Moreover, membrane module engineering has evolved 

from the plate-and-frame type to hollow-fiber and tubular type which are more efficient and effective. Even today, the 

novel UF process advances focus mostly on the enhancement of module designs and better pre-treatment options to 

improve the performance of the process and minimize the fouling of the membrane [25]. 

 

3. Fundamentals of Ultrafiltration 

UF is a membrane separation process that is driven by pressure and utilizes porous membranes to separate solvents, 

solutes, particles, colloids, and macromolecules of their differing sizes by molecular sieving [26]. The principles and 

fundamentals of UF separation are the retention of contaminants by the sieving mechanism and membrane pore size. Upon 

the entry of a solvent, the particles lower than the pores are retained and those beyond the pores are filtered [27]. The 

average diameters of pores vary from 1-100 nm, which allows the filtration on the microfiltration scale to the 

nanofiltration. This is the situation where the UF system is capable of isolating big molecules such as proteins from the 

small solutes. 

The structures of UF membranes with pores of different sizes and shapes are considered a key factor that affects membrane 

separation and flux directly. The membrane can be either symmetric or asymmetric, with a skin layer of a high density 

being the convenient supporting of a porous sublayer [28]. The practical realization of such membranes is, however, 

challenging because the separation characteristics are determined by the skin layer and the support provides mechanical 

strength. Morphology as well as the pore size distribution of the membrane is dependent on the fabrication method and 

the kind of polymer [29]. Typical building units include a finger-like pore in phase inversion membranes, an intertwined 

sponge-like channel in the track-etched membrane, and hollow channels. Fabrication parameters such as porosity, pore 

size, pore distribution, surface roughness, wettability, and chemical resistance are the main parameters to be optimized 

[30]. 

 

 
Figure 2. Membrane Morphology and Pore Structure of PVDF [31] 

 

The different factors in the UF systems that are not working are efficiency and output in Figure 2. They are operational 

conditions [32], membrane features, and characteristics of feed solutions. Crucial to the functioning of the system are the 

following input variables: transmembrane pressure, crossflow velocity, flow mode (batch vs continuous), temperature, 

and module assembly [33]. The choice of transmembrane pressure and crossflow velocity can improve separation flux but 

may create more fouling. Hormone levels increase with elevated temperature which causes rapid growth but may interfere 

with compound synthesis. Feed and bleed operation has retentate concentrate and low flux average [34]. Characteristics 

of feed composition including pH, ionic strength solute concentration greatly affect the degree of membranes’ charge, 

solute rejection and fouling [35]. Pre-treatment and membrane cleaning processes are usually very helpful in forecasting 
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up to 90% of the fouling that is expected as well as improving the performance. The overall system efficiency is due to 

the integral interdependencies of these interacting elements. 

In short, the UF disc separation core is based on the membrane porosity structure and filtration permeate stream. Operation 

and efficacy are controlled by operating parameters, membranes' steric properties and feed solutions' components. New 

findings see UF being applied to water, food, biotechnology, and other sectors either directly or removing the need for 

several steps. 

 

4. Types of Ultrafiltration Membranes 

 

Table 1. The characteristics and examples of each type of ultrafiltration membrane 

Type of Membrane Examples 

Polymeric Membranes 

- Polyethersulfone (PES)  

- Polyvinylidene fluoride (PVDF)  

- Polysulfone (PS)  

- Polyamide (PA) 

Ceramic Membranes 

- Alumina-based membranes  

- Zirconia-based membranes  

- Titania-based membranes 

Hybrid Membranes 

- Polymer-ceramic composite membranes  

- Thin film composite membranes (TFC)  

- Zeolite-incorporated membranes 

 

Membranes are ultrathin barriers of materials that exhibit the capability to differentiate based on physical or chemical 

differences between chemical species. Polymers comprise a category of membranes called polymeric membranes, 

ceramics that form another one of such membranes called ceramic membranes, and hybrid membranes are the most used 

membranes in the industrial sector in Table 1. 

Polymeric membranes are synthesized membranes, which are made up of polymer chains that can accommodate pores of 

different sizes depending on the polymer used and the manufacturing process [37]. Polymers that are used regularly are 

polyethersulfone (PES), polyvinylidene fluoride (PVDF), polysulfone (PS) and polyamides (PA) [38]. The merits of such 

materials as polymeric membranes, which are versatile and tunable in the pore size, are to be found in water treatment 

processes, gas separation, pervaporation and so on as well as membrane bioreactors [39]. The upsides to polymeric 

membranes are their high permeability, low energy consumption, easy fabrication and affordable cost [40]. On the other 

hand, polymers include thermal, mechanical and chemical stability problems and defects. 

Ceramic membranes, which are made of inorganic materials such as alumina, zirconia, titania, zirconium oxide, and silicon 

carbide, have gained popularity for numerous filtration and separation applications [41]. They are characterized by 

exceptional chemical stability and will bear highly astringent conditions such as high temperatures and pressure [42]. 

Silica and polymer ceramic membranes are robust and have long operating lifetime-enabling applications, including 

membrane filters in hot gas combustion, membrane reactors in catalytic processes, electrolysis cells, and liquid separation 

[43]. Nevertheless, the ceramic membranes are the high-priced and tough-in-fracture systems. 

Composite membranes comprise polymeric and inorganic hybrids and take advantage of the benefits of both groups in the 

membranes [44]. Specimens consist of polymer-ceramic composite membranes, thin film composite (TFC) membranes, 

and zeolite-containing membranes. The justification for the synthesis of advanced membranes is to provide higher 

selectivity, permeability, temperature endurance, and mechanical strength than that of ordinary homopolymeric 

membranes [45]. TFC membranes that employ their selective polymeric layer on porous ceramic support are widely 

applied in the reverse osmosis method of desalination [46]. The thin-film polymer successfully provides selectivity while 

the ceramic support gives the product the required mechanical strength.    

 

5. Applications of Ultrafiltration 

The UF membrane scope has been revived in the recent past, being recommended for a diverse range of industries because 

of its versatility and high efficiency. In water treatment and desalination, the UF membranes act as a pretreatment for the 

RO system by removing the particles, the colloids, the viruses and the large organic molecules [47]. Additionally, an inline 

process protects against membrane fouling contributing to the extended lifespan of the downstream processes. The 

breakthroughs occurring in nanotechnology and material science have enhanced the UF membrane's properties of control 

permeability, optimization for selectivity, chemical resistance, and antifouling [48]. New materials such as graphene oxide 

and biomimetic aquaporin membranes have shown the ability for better water fluxes than the traditional flat sheet UF 

membranes. 

UF serves as a critical tool in food and beverage processing for its applications to clarify, concentrate, and fractionation 

of products [49]. The ability of UF membranes to aseptically filter the juice of fruit while retaining the substances, 

responsible for the flavor, is a key feature [50]. Membrane fractionation furthermore enables the purifying and keeping of 
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whey proteins with nutraceutical value obtained from dairy generators [51]. The crossflow UF systems play an energy-

saving role, as they can replace the thermal technologies before the milk is cheesed [52]. Nevertheless, bioactive peptides 

(UF) purified from cheese whey show antimicrobial properties that are alternative to synthetic preserving agents [53]. 

In the pharmaceutical industry, there are applications of ultrafiltration for the fractionation of antibodies in biotherapeutics 

production as well as for the isolations of target compounds. Without this virus clearance by the UF, there is no possibility 

of the biopharmaceutical derivation of cells in culture being safe (8). High molecular weight cutoff UF membranes could 

be applied for pre-formulation to give diafiltration and buffer exchange requisites [54]. Furthermore, UF is a quick 

mechanism that enables the recovery of proteins and the purification of extracellular vesicles, for the examination of novel 

biomarkers from biofluids [55]. 

In industrial plants, UF has been specifically utilized as a replacement for conventional separations like settling, media 

filtration and chemical coagulation. Metallurgical customers make use of UF to recycle industrial engraving fluids 

degraded by tramp oils or sludges [56]. Textile dyeing wastewater and pulp/paper effluents usually contain recalcitrant 

dyes, lignin and even toxic residuals, which amount to serious pollution by-products that impose a load for tertiary UF 

processes [57]. Therefore, breakthroughs made lately have given the UF membranes wider coverage philosophies and 

industries. 

 

6. Performance Evaluation and Characterization Techniques 

6.1. Flux and Rejection Rate Measurements 

 

Table 2. Measurement parameters of membrane rates with examples 

Measurement Parameter Examples Considerations 

Flux 

- Pure water flux  

- Flux of model solutes - Operating pressure and temperature 

Rejection Rate - Rejection of specific solutes - Molecular weight cut-off (MWCO) 

Fouling Rate - Flux decline over time due to fouling - Cleaning protocols 

Recovery Rate 

- Recovery of valuable components 

from feed stream - Desired concentration levels 

 

Membrane separation processes like microfiltration, ultrafiltration, nanofiltration, and reverse osmosis have become 

very important technological options for use in applications like sewage decontamination, concentration and separation 

of desirables from feed streams, food and beverage processing, and pharmaceutical purification [58-60] in Table 2. 

Certain parameters as very important to stop and observe such as unit operations efficiency resulting in flux, rejection 

rate, fouling rate and recovery rate [61]. Flux is a parameter that describes the volumetric flow rate of the permeate fluid 

permeate unit membrane area and is usually reported as LMH (liters per square meter per hour) [62]. It shows the 

dynamic permeability of the membrane and it is associated with the operating pressure, temperature and feed 

characteristics, in addition to membrane properties [63]. A high rate of flux is salient but it has to be in conjunction with 

a high efficiency of extraction. Rates of rejection denote the fraction of solutes that the membrane can reject, shown as 

a percent [64]. This not only reveals the capacity of the membrane to distinguish components based on characteristics 

like molecular weight, shape, and charge but also exhibits the membrane's ability to permit the flow of materials across 

it [65]. Rejection rates depend on the membrane cut-off that rates the molecular weight as well as feed characteristics 

[66]. By the fouling rate, we mean the gradual accumulation of material on the membrane surface as it operates. This 

rate is measured by the way the flux continually declines. And also, fouling decreases the throughput and this frequently 

prompts the cleaning process to raise the flux [67]. The recoverable rate should be considered essential for applications 

that are dedicated to preserving and concentrating permeate. It will define the % of feed being removed via permeate 

(12%). The essence of these key parameters performance, membrane selection and subsequent optimization of operating 

conditions can be achieved when applications are the target [68]. 

 

6.2. Membrane Fouling and Cleaning Strategies 

 

Table 3. Overview of various membrane fouling and cleaning strategies in ultrafiltration, along with examples and 

descriptions of each strategy 

Strategy Description Examples 

Backwashing 

Reversing the flow direction across the membrane to 

dislodge and remove accumulated foulants. 

- Hydraulic backwashing  

- Air scouring 

Chemical 

Cleaning 

Using specific cleaning agents to dissolve or disperse 

foulants, organic deposits, or mineral scales. 

- Acid cleaning (e.g., citric 

acid)  

- Alkaline cleaning 
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Strategy Description Examples 

Mechanical 

Scrubbing 

Physical agitation or scrubbing to mechanically remove 

fouling layers from the membrane surface. 

- Brush cleaning  

- Sponge scrubbing 

Biological 

Cleaning 

Employing enzymes or microorganisms to degrade 

organic foulants, biofilms, or microbial growth. 

- Enzymatic cleaning  

- Bioaugmentation 

Enhanced 

Cleaning 

Methods 

Utilizing advanced techniques such as ultrasonication, 

ozone treatment, or electrochemical cleaning. 

- Ultrasonic cleaning  

- Ozone cleaning 

 

The membrane fouling reduces the operation time and the lifespan of the membrane; thus, creative cleaning and 

maintenance are required. Membrane (foulants) cleaning strategies are commonly used either using physical, chemical, 

and biological methods. The hydraulic backwash mechanizes the reverse flow to scour the fouling sand, while the airflows 

are entered into pores to perform the shear forces [69,70]. In contrast to chemical cleaning, which takes into account the 

specific characteristics of the foulant and membrane, the chemical solution is designed by the fouling type and membrane 

properties in Table 3. Acidic solutions do the best when it comes to the removal of mineral attachments, while alkaline 

solutions are more efficient in dissolving organic soil layers [71]. EPS is the main purpose of the bioball wall 

decomposition through an enzymatic activity [72]. In line with this, the technology utilized behind current practices has 

developed and now incorporates ultrasonication, ozone generation and electrolysis as means of improving its efficiency 

[73]. Oxide and degrade organic foulants in the ozone process, while ultrasonic waves and electrolytic reactions can 

produce free radicals and localized high temperatures effectively to speed up the foulant removal process [74-77]. Using 

a combination of cleaning methods, such as the backwashing of physical and the chemical enhancement of chemical 

contaminations to synergistically remove the complex ones will be another strategy [78]. Ongoing research will be 

required in the future to incorporate cleaning protocols specific to different membrane process variants and types of 

wastewater. 

 

7. Future Perspectives and Outlook 

Ultrafiltration (UF) membranes witnessed a coming back or reemergence over the last decade and this was due to the new 

generation of materials that have been developed which are made possible by the advancement in manufacturing 

technologies, hence, enhanced physical properties like permeability, selectivity, fouling resistance, and chemical stability 

[79]. Nevertheless, this technological advancement needs further improvement. 

Another main issue consists of the formation of the next UF membranes possessing both high permeability and selectivity 

[80,81]. The most important work has been carried out, however, in dramatically enhancement of the permeability but 

there have been no significant attempts to improve the selectivity. It is important to maximize both of their characteristics 

in different application areas. Moreover, Computational modeling and Machine learning can aid in the discovery of UF 

membrane materials and structures, which can be used to accelerate the development of the same [82]. 

Scaling, organic deposits and biofilm development result in the deterioration of efficiency as time goes by. Modern 

antifouling strategies with nanotechnology and fouling-discouraged coatings are offering new possibilities to substantially 

increase antifouling activity [83]. Backpulsing and chemically enhanced backwashing also require adaptations to reduce 

membrane replacement costs [84]. Fabrication methods of membranes embedded into small, easy-to-operate and lazy-

cuts stand a chance to decentralize water treatment systems by locating at the points where water is drunk and eliminating 

the labor-intensive and electricity-driven standard ones in developing communities and remote areas [85-87]. Among 

these, innovative ways of making UF membranes have already shown some promise and can become the next field for 

exciting research. Nanoarchitecturing includes layer-by-layer nanoassembling, surface graft polymerization, incorporation 

of stimuli-responsive polymers, and thin-film nanocomposite membranes with nanomaterial fillers [88]. Understanding 

their performance structural relationships will be critical to designing the next-generation materials [89]. A considerable 

research area encompasses recycle and reuse of UF membranes that could cover a great number of possible cases and cost 

reductions [90]. Future work on broader mechanical stability, selective layer replacements, and membrane constituent 

recycling can widen the list of possible applications. 

The increasing global demand for clean water, shifting environmental regulations, especially in the food, pharmaceutical 

and semiconductor industries plus the use of water reuse will be the major reasons for the wider use of UF technology 

because of its efficiency in energy, space compactness and ability to select the contaminants [72]. The implementation of 

automatic and sensor integration can also be done and this can lower the labor costs. Decisive achievements, that reduce 

lifecycle influence using longer membrane lifespan, decreased sedimentation, and reusability will be in favor of ecological 

conservation. In addition to this, UF treatment can be recycled from the wastewater, which will also ensure space 

utilization than the conventional treatment process, thus preserving land resources [91]. The reality is a chillingly similar 

tunnel, riddled with spikes and detritus. However, the gloomy veneer is soon replaced by a breathtakingly beautiful 

orchestra of colorful birds chirping in the distance. However, these persistent challenges are just some of the terrains that 

give continued opportunities for the membrane community to come up with improved materials, processes and systems. 
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Conclusion 

The adoption of ultrafiltration has today become quite common in industries that have specific purification needs such as 

those that want to obtain solutions of specific macromolecular components and remove impurities from highly 

concentrated solutions containing particles or microbes. The production of membranes of nanofibers and graphene oxide 

has now driven the state-of-the-art limit in selectivity while module designs and cross-flow modes of operation have 

features for continuous and high-efficiency operation. Usages cross various areas such as wastewater treatment, food and 

beverage processing, drug purification, and so on. Yet, fouling problems are still among the top issues that are faced by 

membrane bioreactors, the cleaning solutions using physical scouring, chemical solutions, and enzymatic deterioration 

are being applied to correct this problem. Among the prospects to be explored are fouling-resistance membranes and 

process innovations that will increase the application of ultrafiltration. Nevertheless, it remains one of the fundamental 

parts of more critical systems that are dependent on the sterile filtration of process fluids and selective fractionation of 

valuable products, among others. The use of ultrafiltration in many industrial and bioprocess applications will be enhanced 

leading to wider application across industries that value particles, bacteria, and molecular components being separated 

reliably and efficiently. 
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